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ABSTRACT

This chapter studies the large sample properties of a subclassification-
based estimator of the dose–response function under ignorability. Employ-
ing standard regularity conditions, it is shown that the estimator is root-n
consistent, asymptotically linear, and semiparametric efficient in large
samples. A consistent estimator of the standard-error is also developed
under the same assumptions. In a Monte Carlo experiment, we investigate
the finite sample performance of this simple and intuitive estimator and
compare it to others commonly employed in the literature.
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INTRODUCTION

Treatment effect models are a prime example of a missing data problem.
Units are assumed to have a collection of distinct random potential
outcomes but, depending on their treatment status, only one of these
outcomes is observed. The population parameters of interest in these
models are usually some feature of the marginal distributions of the
potential outcomes such as the means or quantiles. These parameters,
however, are not identifiable from a random sample of observed outcomes
and treatment statuses without further assumptions because of the
potential presence of selectivity bias; a non-random missing data problem.
A common identifying assumption in these models is called ignorability,
which includes a key restriction on the data-generating process known as
unconfoundedness or selection on observables. This assumption imposes
random missing data after conditioning on a set of predetermined always-
observed covariates and permits the development of flexible inference
procedures by first working conditionally on the covariates and then
averaging out appropriately.

In the context of finite multi-valued treatment effects, a simple and
interesting estimand is the dose–response function (DRF), which describes
the mean effect of each treatment level on the outcome of interest.1 Under
ignorability, many different semiparametric estimators for the DRF may be
constructed using flexible approaches, including nonparametric regression
methods, matching techniques, inverse probability weighting (IPW)
schemes, procedures based on the estimated (generalized) propensity score,
and hybrid procedures that combine some of these techniques.2 These
estimators, which include a preliminary nonparametric estimator, are well
known to be root-n consistent (where n is the sample size) and asymptoti-
cally normal under appropriate regularity conditions, provided certain
restrictions on the tuning and smoothing parameters involved in the
estimation are satisfied. In most cases these estimators are also asympto-
tically linear and semiparametric efficient.

This chapter develops a new semiparametric efficient estimator of the DRF
based on the idea of subclassification, blocking, or stratification on the
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observed predetermined covariates. The estimator proceeds by first dividing
the support of the observed covariates into disjoint cells, also called blocks or
stratums, then carrying on inference using only observations within each cell,
and finally averaging out appropriately. Intuitively, for cells ‘‘small enough,’’
the potential outcomes within each cell are approximately missing completely
at random by virtue of ignorability, leading to a consistent, asymptotically
linear, and semiparametric efficient estimator under conventional regularity
conditions. Moreover, using this idea we also develop a simple and intuitive
consistent standard-error estimator, leading to asymptotically valid con-
fidence intervals for the population parameter of interest.

The idea behind the semiparametric estimator discussed in this chapter
may be traced back to the early work of Cochran (1968), who informally
discusses the idea of subclassification with a univariate continuous covariate
in observational studies. In this chapter we formally derive a first-order,
asymptotically linear large sample approximation for a class of subsclassi-
fication-based semiparametric estimators that allow for an arbitrary
number of continuous covariates as well as an arbitrary large polynomial
of approximation within each cell. These results are also connected to the
work of Rosenbaum and Rubin (1983, 1984), who discuss inference by
subclassifying observations based on the estimated propensity score in
observational studies. In this chapter, however, subclassification is done
directly on the observed covariates rather than on the estimated (generalized)
propensity score, thereby avoiding preliminary nonparametric estimation of
the propensity score and the related technical issues of generated regressors
and random denominators. The ongoing work of Cattaneo, Imbens, Pinto,
and Ridder (2009) addresses the delicate issue of subclassification-based
inference using the estimated propensity score. The results in this chapter can
be viewed as a first step toward developing the theoretical properties of such a
procedure by considering the ‘‘known (generalized) propensity score’’ case,
since a known propensity score may be treated as a univariate observed
covariate and the results herein apply immediately.3

The subclassification-based estimator studied in this chapter may also be
viewed as a two-step semiparametric estimator that depends on a special
nonparametric procedure called Partitioning. In this chapter we exploit
this idea, together with some of the recently developed asymptotic results
presented in Cattaneo and Farrell (2011) for nonparametric partitioning
estimators, to provide sufficient conditions for the efficient semiparametric
estimation of the DRF, and to construct simple and easy-to-implement
consistent standard-error estimators. We assess the performance of these large
sample approximations in a Monte Carlo experiment.
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The rest of the chapter is organized as follows. Section 2 introduces the
multi-valued treatment effect model, discusses identification, and describes
(both intuitively and formally) the subclassification-based semiparametric
estimator. Section 3 develops the asymptotic properties of this estimator,
while Section 4 reports the main results of a simulation study. Finally, Section
5 summarizes the work presented here and discusses possible extensions. All
technical derivations are contained in the Appendix.
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MODEL, IDENTIFICATION, AND ESTIMATOR

This chapter focuses on the estimation of the DRF in the context of a
(finite) multi-valued treatment effect model. Suppose that ðYi;X

0
i;TiÞ

0,
i ¼ 1; 2; . . . ; n, is an observed random sample, where Yi is an outcome
variable, Xi 2 X � Rd is a vector of continuous covariates, and Ti 2T ¼
f0; � � � ; tg with T a finite set of treatments or groups. The procedure
discussed below may be easily generalized to allow for discrete covariates by
computing the estimator for each fixed distinct combination, and then
averaging out appropriately, as it is standard in the literature. However, to
simplify the discussion (and notation) we consider only continuous
predetermined covariates. The outcome variable Yi is assumed to satisfy
Yi ¼ D0;iYið0Þ þ � � � þDt;iYiðtÞ, where Dt;i ¼ 1ðTi ¼ tÞ, t ¼ 0; . . . ; t, is a
treatment or group indicator, and Yið0Þ; . . . ;YiðtÞ are tþ 1 random
potential outcomes. [1ð�Þ denotes the indicator function.] For each unit
i ¼ 1; . . . ; n, only one of the tþ 1 potential outcomes is observed, according
to the value of Ti. This leads to the fundamental problem of causal inference
in the context of program evaluation (e.g., Holland, 1986), a classical
missing data problem.

The estimand of interest is the DRF given by m ¼ ðm0; . . . ; mtÞ
0 with

mt ¼ E½YiðtÞ�. More general estimands are briefly discussed in Section 5,
which summarizes potential extensions to the work undertaken in this
chapter. Because all but one of the potential outcomes are missing for each
unit, m is not identifiable from the data without further assumptions. The
following identification assumption is commonly used in the missing data
and program evaluation literatures.

Assumption 1. (Weak Ignorability) For all t 2T:

(a) YiðtÞ@Dt;ijXi�

(b) 0oemin � P½Ti ¼ tjXi�.
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Assumption 1(a) corresponds to a (weak) version of unconfoundedness or
selection on observables, and implies that after conditioning on the observed
covariates missing data occurs completely at random. This assumption is
strong, but commonly employed in the literature. Assumption 1(b) ensures
that the generalized propensity score etðxÞ ¼ P½Ti ¼ tjXi ¼ x� is bounded
away from zero, an important condition for semiparametric efficient
estimation. This assumption, and different variations thereof, has been
commonly used in the missing data, measurement error, and treatment
effect literatures.

Assumption 1 implies that

mt ¼ E½YiðtÞ� ¼ E
Dt;iYi

etðXiÞ

� �
¼ E

E½Dt;iYijXi�

etðXiÞ

� �
¼ E½E½YijTi ¼ t;Xi��;

which leads to various semiparametric plug-in (feasible) estimation approaches
for theDRF. These alternative representations motivate IPW, imputation, and
projection estimation, among other possibilities. For a discussion of these
alternative, well-known approaches see, for example, Chen et al. (2004, 2008),
Bang and Robins (2005), Imbens, Newey, and Ridder (2006), Tsiatis
(2006), Heckman and Vytlacil (2007), Imbens and Wooldridge (2009), and
references therein. Regardless of the particular identifying approach employed,
in all cases at least one nonparametric estimator is required, unless the
researcher is willing to impose strong parametric assumptions. Suitable
implementations of flexible, semiparametric estimators are available in
the literature when using local polynomials (including kernels) or sieves
(including series), and these estimators are known to be asymptotically linear
and semiparametric efficient under appropriate regularity conditions. [An
important alternative estimator is the matching estimator of Abadie and
Imbens (2006) which is not asymptotically linear.]

To motivate the subclassification estimator considered in this chapter,
note that if the potential outcomes are assumed to be missing completely at
random, that is, if YðtÞ@Dt, then a simple (possibly inefficient) estimator of
mt is given by

�Yt ¼
1

�Wt

Xn
i�l

Dt;iYi; �Wt ¼
Xn
i�l

Dt;i;

which is a simple weighted average of the observed outcomes. However, if
the data are not missing completely at random, �Yt will be inconsistent for mt
in general. Nonetheless, Assumption 1 leads to a similar idea based on
subclassification on the observed covariates Xi. Suppose that X is compact
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and that Pn ¼ fPj : j ¼ 1; � � � ; Jd
ng is a disjoint partition covering X with

typical cell Pj (implicit dependence on n through the partitioning scheme is
suppressed for notational ease). Within each (small) cell Pj of the partition
Pn, Assumption 1 implies that Y(t) is ‘‘approximately’’ independent of Dt,
suggesting the following subclassification-based estimator:

m̂t ¼
XJd

n

j¼1

Nj

n
�Yj;t; �Yj;t ¼

1

Nj;t

Xn
i¼1

1Pj
ðXiÞDt;iYi;

Nj ¼
Xn
i¼1

1Pj
ðXiÞ; Nj;t ¼

Xn
i¼1

1Pj
ðXiÞDt;i; 1Pj

ðxÞ ¼ 1ðx 2 PjÞ

The ‘‘local’’ estimate �Yj;t is only well defined when Nj;t40, which is
guaranteed in large samples by Assumption 1(b), provided that the cells are
not too small. A proper definition of this estimator needs to account for the
potential empty cells in finite samples, as done formally below. From an
intuitive point of view Nj;t=Nj � P½Dt;i ¼ 1jXi 2 Pj � � etðXiÞ. Thus, under
appropriate regularity conditions and for a fine enough partition, it is
natural to expect that

m̂t ¼
1

n

Xn
i¼1

XJdn
j¼1

Nj

Nj;t
1Pj
ðXiÞDt;iYi � mt;

If all cells of the partition become small as Jd
n !1, this subclassification-

based estimator may be viewed as a semiparametric estimator given by

m̂t ¼
1

n

Xn
i¼1

m̂tðXiÞ; m̂tðxÞ ¼
XJd

n

j¼1

Nj

Nj;t
1Pj
ðxÞDt;iYi

where Jd
n corresponds to the tuning parameter underlying the nonpara-

metric procedure. In fact, m̂tðxÞ corresponds to a special case of the
nonparametric estimator of a regression function known as Partitioning
(see, e.g., Cattaneo & Farrell, 2011; Györfi, Kohler, Krzyzak & Walk, 2002,
Chap. 4).

Valid first-order, asymptotically linear, semiparametric inference requires
a delicate choice of tuning and smoothing parameters so that the higher-
order variance and the higher-order bias of the statistic are asymptotically
negligible. For the partitioning estimator, Jd

n is the tuning parameter which
‘‘controls’’ the variance of the estimator: the smaller the cells (i.e., the larger
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Jd
n), the larger the variance. The bias, on the other hand, is (partially)

determined by the ‘‘quality’’ of approximation: within each cell, the
approximation is based on the sample mean of Dt;iYi, leading to an
approximation error proportional to the inverse of the length of the cell.
Thus, if bias is a concern, a natural way to improve the approximation is to
use a more flexible polynomial in Xi within each block.

These insights lead to the following subclassification-based estimator,
which is the main object of study in this chapter. The following notation is
needed to formally describe the estimator. For fixedK 2 N, letRðxÞ represent
a column vector containing the complete polynomial basis of order ðK � 1Þ
based on x 2 Rd , that is, for x ¼ ðx1; � � � ;xd Þ

0 and a ¼ ða1; � � � ; adÞ
0
2 Zd

þ

(a multi-index), with aj j ¼ a1 þ � � � þ ad and xa ¼ xa11 . . . x
ad
d , each element of

RðxÞ is given by xa for a 2 fa 2 Zd
þ : aj j � K � 1g. For example, if d ¼ 1 then

RðxÞ ¼ ð1; x;x2; . . . ;xK�1Þ0. Within each cell Pj, the basis is denoted by
RjðxÞ ¼ 1ðx 2 PjÞRðxÞ. Using this notation, a subclassification-based estima-
tor (of order K�1) is given by

m̂t ¼
1

n

Xn
i¼1

m̂tðXiÞ; m̂tðxÞ ¼
XJd

n

j¼1

RjðxÞ
0b̂j ;

b̂j ¼ 1n;jðR
0
j;tRj;tÞ

�R0j;tY ;

Rj;t ¼ ½Dt;1RjðX1Þ; . . . ;Dt;nRjðXnÞ�
0; Y ¼ ðY1; . . . ;YnÞ

0;

where 1n;j ¼ 1ðlminðÔj;tÞ4cÞ, with lminðAÞ the minimum eigenvalue of a
matrix A, Ôj;t ¼ R0j;tRj;t=ðnqjÞ, qj ¼ P½Xi 2 Pj�, and c a fixed positive constant.

This estimator is quite intuitive: within each cell, the unknown regression
function is approximated by a polynomial of order K�1 in Xi, which is used
to impute missing values for each observation, and then the imputed values
are averaged out to obtained the final estimator. As shown in the Appendix,
under appropriate regularity conditions, 1n;j takes the value 1 with
probability approaching one, so that the least squares problem within each
cell of the partition is (asymptotically) well defined.
LARGE SAMPLE RESULTS

This section describes the large sample properties of estimator introduced in
the previous section. The following assumption imposes a set of simple
restrictions on the data-generating process.
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Assumption 2. (a) Xi has compact support X � Rd , and its (Lebesgue)
density is bounded and bounded away from zero; (b) E½jYiðtÞj

4jXi� is
bounded for all t 2T; (c) mtðxÞ is sm-times continuously differentiable for
all t 2T; (d) etðxÞ is se-times continuously differentiable for all t 2T.

Assumption 2(a) is important, and may be relaxed only when certain
special partitioning schemes are employed and more stringent moment
assumptions are imposed, but is otherwise difficult to weaken. Assumptions
2(b)–(d) implicitly control the rate of convergence in uniform norm of the
partitioning nonparametric estimator, as shown in Cattaneo and Farrell
(2011), and are standard in nonparametric and semiparametric estimation.

Regarding the partitioning nonparametric estimator, the following assump-
tion will be imposed throughout. For scalars sequence faj : j ¼ 1; � � � ; Jng, let
aj�J

�1
n denote that C	J

�1
n � aj � C	J�1n with C	 and C	 universal positive

constants not depending on n nor j ¼ 1; . . . ; Jn.

Assumption 3. (a) For ‘ ¼ 1; � � � ; d and Jn 2 N, let the ‘-dimension of X
be partitioned into the Jn disjoint intervals ½p‘;j�1; p‘;jÞ, j ¼ 1; . . . ; Jn � 1,
and ½p‘;Jn�1; p‘;Jn

�, satisfying p‘;j�1op‘;j for all j, and jp‘;j � p‘;j�1j �J
�1
n .

The complete partition of X consists of the Jd
n sets formed as Cartesian

products of all such intervals, with typical cell denoted Pj. (b) For some
K 2 N, RðxÞ represents the complete polynomial basis of order K�1
based on x 2 Rd .

Assumption 3(a) imposes natural restrictions on the partitioning scheme
employed, which guarantee that each cell is well defined. By construction,
each cell must satisfy: volðPjÞ �J

�d
n , or equivalently, for some positive

constants C	 and C	: C	J
�d
n � min1�j�JdnvolðPjÞ � max1�j�JdnvolðPjÞ �

� C	J�dn , where volð�Þ denotes the volume of cell Pj. The simplest possible
scheme is an evenly spaced partition, but Assumption 3(a) allows other
possibilities so long as all cells continue to decrease proportionally to Jd

n . For a
simple example, one may use a partition twice as fine in a region of abundant
data compared to a sparse region (e.g., where the density is low). Assumption
3(b) specifies the degree of the polynomial used in the approximation within
each cell. This assumption is meant to cover the general, unrestricted case,
although in applications other (restricted) bases may be of interest. For
example, if mtðxÞ is assumed to be additively separable, then the interactions
between covariates may not be included in the basisR(x), leading to a simpler
least squares problem. The goal of Assumption 3(b) is to ensure that R(x) is
flexible enough to remove bias up to ‘‘order K,’’ as shown in the Appendix.
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The following theorem establishes that m̂t has an asymptotically linear
representation, with the well-known efficient influence function for mt (see,
e.g., Hahn, 1998).

Theorem 1. Suppose Assumptions 1–3 hold, let Sm ¼ sm þ 1 and
Se ¼ se þ 1 and

ffiffiffi
n
p

J
�K^Sm^Se
n ! 0 and J10d=7

n logðJnÞ
2=n! 0. Then, for

all t 2T,

ffiffiffi
n
p
ðm̂t � mtÞ ¼

1ffiffiffi
n
p
Xn
i¼1

ctðYi;Xi;TiÞ þ op 1ð Þ;

where

ctðYi;Xi;TiÞ ¼
Dt;i½Yi � mtðXiÞ�

etðXiÞ
þ mtðXiÞ � mt;
(c)
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n !1 such that m̂ is

asymptotically linear and semiparametric efficient, provided both mtðxÞ and
etðxÞ are smooth enough and K is large enough.4 The rate restrictions in
Theorem 1 describe the lower and upper bounds on the rate of growth for
the nonparametric tuning parameter, as is common in semiparametric
inference. This condition formalizes the intuition above: the first statement
requires sufficiently small cells to control bias, while the second ensures the
nonparametric variance does not grow too fast.

It follows from this theorem that
ffiffiffi
n
p
ðm̂� mÞ!dNð0;VÞ, with V the

semiparametric efficiency bound for m, that is, V has (t,s)-element
(1 � t; s � t) given by

V ½t;s� ¼ E 1ðt ¼ sÞ
s2t ðXiÞ

etðXiÞ
þ ½mtðXiÞ � mt�½msðXiÞ � ms�

� �
;

where s2t ðXiÞ ¼ V½YiðtÞjXi�. See, for example, Cattaneo (2010) for a
discussion on this and related results.

To construct feasible, asymptotically valid confidence intervals for m a
consistent estimator of the standard errors is needed. Several alternatives are
in principle possible, although a subclassification-based estimator seems
most natural in the present context. One such estimator may be justified as
follows. The overall asymptotic variance may be decomposed into the sum
of the ‘‘within’’ and ‘‘between’’ variance as follows:

V ½t;s� ¼ E 1ðt ¼ sÞ
s2t ðXiÞ

etðXiÞ

� �
þ E ½mtðXiÞ � mt�½msðXiÞ � ms�
� �

¼ VW ;½t;s� þ VB;½t;s�:
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It is intuitive to separately estimate each component. First, because a least
squares estimate is computed within each cell, a natural choice for V̂W ;½t;s� is
a Huber–Eicker–White heteroskedasticity-robust estimator:

V̂W ;½t;s� ¼ 1ðt ¼ sÞ
XJd

n

j¼1

1n;j L̂
0

jÔ
�1

j;t Ŝj;tÔ
�1

j;t L̂j ; L̂j ¼
1

nqj

Xn
i¼1

RjðXiÞ;

Ŝj;t ¼
1

n

Xn
i¼1

RjðXiÞRjðXiÞ
0Dt;i½Yi � m̂tðXiÞ�

2:

This estimator has a simple, intuitive representation when K¼ 1, given by

V̂W ;½t;s� ¼ 1ðt ¼ sÞ
1

n

Xn
i¼1

ŝ2t ðXiÞ;

ŝ2t ðxÞ ¼
XJdn
j¼1

N2
j

N2
j;t

1Pj
ðxÞDt;i½Yi � m̂tðXiÞ�

2:

Second, for VB;½t;s�, a simple partitioning-based plug-in estimator is:

V̂B;½t;s� ¼
1

n

Xn
i¼1

½m̂tðXiÞ � m̂t�½m̂sðXiÞ � m̂s�:

The following theorem verifies that both estimators, V̂W ;½t;s� and V̂B;½t;s�,
are indeed consistent for their population counterparts.

Theorem 2. Suppose the conditions of Theorem 1 hold. Then, for all
t; s 2T, V̂W ;½t;s�!pVW ;½t;s� and V̂B;½t;s�!pVB;½t;s�.

It follows immediately from Theorem 2 that V̂ with typical (t,s)-element
(1 � t; s � t) given by V̂ ½t;s� ¼ V̂W ;½t;s� þ V̂B;½t;s� is a consistent estimator of V,
leading to a consistent estimator of the semiparametric efficiency bound
obtained in Theorem 1.
SIMULATIONS

In this section we report the results of a Monte Carlo study of the
subclassification-based estimator. We focus on a binary treatment (i.e.,
t¼ 2) and conduct inference on the average treatment effect throughout,
both for simplicity and to facilitate comparison with other results in the
program evaluation literature.
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The data generating process we consider is as follows.X1i
Uniform½�2; 2�,
Yið0Þ ¼ m0 þ X1i þ Z0i, Yið1Þ ¼ m1 þ expfX1ig � E½expfX1ig� þ Z1i, and
Ti ¼ 1fX3

1i=3� X1i þ Z2i40g, where the errors Zki
Nð0; 2Þ, k¼ 0,1,2, and
are mutually independent. We also consider a heteroskedastic variant of
this model, in which Z1i 
 Nð0; 2X2

1iÞ. Furthermore, we extend these
models to include a second covariate by generating X2i 
 Uniform½�2; 2�
independently of X1i then setting Yið0Þ ¼ m0 þ X1i þ X2i þ Z0i, Yið1Þ ¼ m1þ
X3

1iX
2
2i þ expfX1ig þ expfX2ig � 2E½expfX1ig� þ Z1i, and all else as above. In

all cases we set m0 ¼ 0 and m1 ¼ 1, so that the average treatment effect is one.
We conduct simulationsof eachmodelwith sample sizes of 500and1,000, both
using 2,000 replications and evenly spaced cells.

The average bias for the univariate model are reported in Fig. 1 for a
range of Jn. The homoskedastic and heteroskedastic model produce very
similar results, and the discussion below applies to both. The figure
demonstrates several salient features of the subclassification estimator. First,
the increased flexibility of the nonparametric estimator resultant from
increasing the number of cells initially decreases the bias. The nonpara-
metric procedure relies on Jd

n !1 as n!1, and the bias decreases
accordingly: see (A-2) in the appendix. The second important feature is the
(c)
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ld 
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Fig. 1. Empirical Average Bias for Univariate Models.



MATIAS D. CATTANEO AND MAX H. FARRELL104
(c)
 E

mera
ld 

Grou
p P

ub
lis

hin
g

choice of the (fixed) parameter K, giving the order of the fit within each cell.
Recall from above that K¼ 1 corresponds to fitting means within each cell,
K¼ 2 gives a linear fit, and so forth. As aforementioned, a larger K improves
the theoretic bias properties of the estimator and for modest values of Jn this
is borne out in Fig. 1: For Jn below 10, fitting means within each cell may
not be sufficient to remove bias, but an increase merely to linear fits is often
adequate. Much more modest improvements result from a quadratic fit.

However, as Jn increases further, the bias properties decline: the estimator
has increased bias compared to fewer cells, and substantially so for the
quadratic fit. This is a consequence of the least squares problem being ill-
posed in an increasing number of cells. Heuristically, for the (fixed) n
chosen, these Jn represent sequences for which the rate restrictions of
Theorem 1 do not hold, and hence the distributional approximation is
invalid. Recalling the formulation above, for these ‘‘empty cells’’ 1nj ¼ 0 and
the matrix Ôj;t is singular (or near singular; in practice a numerical cut-off is
employed). Hence, these cells are not included in the estimate, leading to
bias. It is beyond the scope of this work to study a formal trimming
procedure, but one that controls for empty cells in a systematic way may
lead to improved performance for certain choices of Jn. These results (and
similarly those of the bivariate specification below) may be interpreted as a
cautionary tale regarding choice of smoothing and tuning parameters in
nonparametric estimation in general. It is also important to note that this
phenomenon does not impact the estimator with degree zero (fitting means)
as severely, since only one observation per cell is required. Indeed, for bias
the piecewise constant version of the subclassification-based estimator is
quite robust to the choice of Jn. Finally, note that the increased sample size
expands the range of Jn for which the estimator performs well, for any
choice of K.

Fig. 2 reports coverage rates for 95% confidence intervals for the
univariate models. Many of the same conclusions are evident. For modest
values of Jn, increased K leads to more accurate coverage, but beyond a
certain value, coverage declines more rapidly for higher values of K. Again,
the robustness to choice of Jn for K¼ 1 is evident. The coverage is
remarkably accurate for even a large number of cells. The variance
estimator accounts for heteroskedasticity quite well: only a small loss is
evident. In practice, the ‘‘empty-cell’’ issue is likely to be a greater concern.

Figs. 3–6 show the Gaussian approximation for the four univariate
models. The estimator approximates the semiparametric efficiency bound
for several different choices of Jn and K, matching the result of Theorem 1.
In all cases, the same conclusions above are evident and the
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Fig. 2. Coverage Rates for 95% Confidence Intervals for Univariate Models.
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heteroskedasticity makes little difference. For moderate choices, the
robustness is again demonstrated. However, for n¼ 500 and a large Jn,
the estimator is biased and the variance is inflated: the bottom-right graph in
Figs. 3 and 5 shows that the approximation can be poor. Again, increasing
the sample size ameliorates the issue, as would be expected from the theory
in third section.

The conclusions from the bivariate model are somewhat different. Figs. 7
and 8 report bias and coverage for the bivariate models. Note that the range
of Jn is restricted compared to the univariate models. Recall that the theory
requires Jd

n cells, so that the points marked as ‘‘10’’ in Figs. 7 and 8 actually
utilize J2

n ¼ 100 total cells. Here the empty cell problem has become severe,
and both the bias and coverage properties become extremely poor. Also
observe that for smaller values of Jn, fitting means is no longer sufficient to
remove bias or produce accurate coverage: both are more accurate for the
quadratic fit for a larger range of Jn. This illustrates the tension between the
bias and variance conditions in Theorem 1 for the sequence Jn. This ‘‘curse
of dimensionality’’ is a common problem in nonparametric estimation.
Figs. 9–12 show the Gaussian approximations, which exhibit the same
issues. In some cases, the approximation is extremely poor for these sample
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Fig. 3. Gaussian Approximation for Univariate Homoskedastic Model, n ¼ 500.
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Fig. 4. Gaussian Approximation for Univariate Homoskedastic Model, n ¼ 1;000.
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Fig. 5. Gaussian Approximation for Univariate Heteroskedastic Model, n ¼ 500.
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Fig. 6. Gaussian Approximation for Univariate Heteroskedastic Model, n ¼ 1;000.
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Fig. 7. Empirical Average Bias for Bivariate Models.

Fig. 8. Coverage Rates for 95% Confidence Intervals for Bivariate Models.
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Fig. 9. Gaussian Approximation for Bivariate Homoskedastic Model, n ¼ 500.
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Fig. 10. Gaussian Approximation for Bivariate Homoskedastic Model, n ¼ 1;000.
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Fig. 11. Gaussian Approximation for Bivariate Heteroskedastic Model, n ¼ 500.
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Fig. 12. Gaussian Approximation for Bivariate Heteroskedastic Model, n ¼ 1;000.
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sizes. However, observe that for moderate values of Jn (e.g., Jn ¼ 3; Jd
n ¼ 9),

the semiparametric efficiency bound is approximated well for certain choices
of K. To investigate this further, we simulated the bivariate homoskedastic
model with a sample size of n ¼ 2;000. The Gaussian approximation is
shown in Fig. 13. As would be expected, the estimator performs better for a
wider range of Jn and K. The bias and coverage results (not shown) are also
substantially improved. When considering additional regressors, researchers
should keep this ‘‘curse of dimensionality’’ in mind.

Finally, we compare the partitioning estimator to several others common
in the literature: IPW, a series-based imputation estimator, and M-nearest-
neighbor matching. The propensity score is estimated using a logistic
regression on a power series of Xi up to order four or six, and then the
average treatment effect is estimated by inverse weighting as in Hirano,
Imbens, and Ridder (2003). The series estimator uses nonparametric
regression to impute missing outcomes in much the same spirit as the
partitioning estimator, but the approximation is global, see Imbens et al.
(2006). Here we use a power series of degree 4 or 6, but to approximate the
underlying regression function instead of the propensity score. Finally, we
consider nearest-neighbor matching Abadie and Imbens (2006). We
implement this in Stata using the nnmatch command of Abadie, Drukker,
Herr, and Imbens (2004). We consider one- and two-neighbor matching, as
well as simple and bias-adjusted estimates. For brevity, we consider only the
univariate homoskedastic model. Following the above results, we use only
7- and 10-cell partitions, and only up to a linear fit. Table 1 presents mean-
square error comparison between the estimators. Gaussian approximations
are given in Figs. 14 and 15. In the figures the 10-cell subclassification
estimator with degree 0 is given by the solid line, with the long-dashed line
for degree one. Results are comparable with Jn ¼ 7, so this is excluded. The
comparison estimator is given by the short-dashed line for the ‘‘lower’’
degree (power series of degree four in the case of IPW and Series, or one
match) and a dotted line for the ‘‘higher’’ degree (degree 6, two matches).

The subclassification estimator performs comparably to these alterna-
tives. Both the IPW and series estimators are known to attain the
semiparametric efficiency bound, which is borne out in panels (A) and (B)
of Figs. 14 and 15. Table 1 shows that these estimators exhibit comparable
variance to the subclassification estimator. For a fixed number of matches,
nearest-neighbor matching is well-centered but does not attain the bound,
and hence it is not surprising that the subclassification estimator is more
concentrated, see panels (C) and (D). The MSE of the matching estimator is
larger as a result. For a piecewise constant or linear fit, the subclassification
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Fig. 13. Gaussian Approximation for Bivariate Homoskedastic Model, n ¼ 2;000.
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Table 1. Mean-Square Error Compared to Alternative Estimators.

n¼ 500 n¼ 1,000

Bias Var. MSE Bias Var. MSE

Subclassification estimator

Jn¼ 7 K¼ 1 0.484 10.172 10.407 0.887 9.868 10.655

Jn¼ 7 K¼ 2 �0.14 10.087 10.107 0.015 9.474 9.474

Jn¼ 10 K¼ 1 0.174 10.11 10.14 0.427 9.543 9.726

Jn¼ 10 K¼ 2 �0.138 10.285 10.304 0.021 9.595 9.595

IPW

Degree 4 �0.137 9.902 9.921 0.016 9.405 9.405

Degree 6 �0.358 10.567 10.695 �0.16 9.738 9.764

Series

Degree 4 �0.136 9.804 9.822 0.012 9.35 9.35

Degree 6 �0.357 10.446 10.573 �0.169 9.725 9.754

NN-matching

Simple M¼ 1 �0.135 13.24 13.258 �0.003 12.619 12.619

Simple M¼ 2 �0.113 11.501 11.514 0.021 10.982 10.982

Bias-adj M¼ 1 �0.138 13.24 13.259 �0.005 12.618 12.618

Bias-adj M¼ 2 �0.12 11.502 11.516 0.018 10.981 10.981

Fig. 14. Comparison to Alternative Estimators, n ¼ 500.
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Fig. 15. Comparison to Alternative Estimators, n ¼ 1;000.
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estimator appears to be on par with popular choices in the econometrics
literature.
m

(c)

 E
EXTENSIONS AND FINAL REMARKS

The main result of this chapter (Theorem 1) shows that the subclassification-
based estimator of the DRF introduced in the second section is
asymptotically linear and semiparametric efficient under standard regularity
conditions. Theorem 2 also demonstrates that a simple, consistent standard
errors estimator is easy to construct based on the idea of subclassification. In
addition, the simulation study reported in the fourth section suggests that
this estimator performs well in finite samples.

The theoretical results presented in this chapter may be easily extended to
cover other potential estimands of interest. Perhaps the most natural
extension would be to consider estimating the quantiles of the distribution
of Y(t), t 2T. (see, e.g., Firpo, 2007.) In this case, because the a-th
quantile of Y(t), denoted by qtðaÞ, solves 0 ¼ E½mðYðtÞ; qtðaÞ; aÞ� with
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mðy; q; aÞ ¼ 1ðy � qÞ � a, a natural subclassification-based estimator of qtðaÞ
would be given by q̂tðaÞ ¼ argminq Mnðq; aÞ

		 		,

Mnðq; aÞ ¼
1

n

Xn
i¼1

q̂tðXi; aÞ; q̂tðx; aÞ ¼
XJdn
j¼1

RjðXiÞ
0b̂j;a;
) E
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p P
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g

b̂j;a ¼ 1n;jðR
0
j;tRj;tÞ

�1R0j;tYðq; aÞ;

Yðq; aÞ ¼ ½mðY1; q; aÞ; . . . ;mðYn; q; aÞ�0:

Under appropriate regularity conditions, it seems plausible that the
resulting estimator q̂tðaÞ would also be asymptotically normal and
semiparametric efficient. More generally, it is natural to expect that such
a result would hold for other estimands as defined by a choice of function
mð�Þ in some appropriate class. For a discussion on related ideas and other
potential extensions see, for example, Cattaneo (2010) and references
therein. These extensions are not considered in this chapter for brevity, and
consequently are relegated for future work.

Another useful extension to the present work would be to develop a guide
for the choice of Jn in applications. The number of cells is the nonparametric
tuning parameter, and its choice is important for the finite sample properties
of the estimator, as discussed in the fourth section. A natural criterion for
choosing Jn would be to consider a mean-square error expansion of the
estimator, which could be minimized to find the optimal number of cells.
Among other things, this would be a function of K, the smoothing
parameter. Following this, a simple ‘‘plug-in’’ estimate could be proposed
for the optimal Jn.
(c
NOTES

1. See, for example, Imbens (2000), Lechner (2001), Imai and van Dyk (2004),
Cattaneo (2010), and references therein.
2. For a review on the program evaluation and missing data literatures, see, for

example, Chen, Hong, and Tarozzi (2004, 2008), Heckman and Vytlacil (2007),
Imbens and Wooldridge (2009), Bang and Robins (2005), Tsiatis (2006), Wooldridge
(2007), and references therein.
3. For further discussion on estimators combining subclassification and regression

see, for example, Imbens (2004) and Imbens and Wooldridge (2009).
4. The rate restrictions imposed in Theorem 1 are in general not minimal and may

be relaxed in certain cases. It is possible to show by example that a necessary
condition is given by Jd

n=n! 0.
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APPENDIX

Throughout the appendix, C denotes a generic positive constant that
may take different values in different places. All bounds are uniform in
j ¼ 1; . . . ; Jd

n unless explicitly noted otherwise. For A, a scalar, vector, or
matrix, let Aj j denote the Euclidean norm.

Define Oj;t ¼ q�1j E½1Pj
ðXiÞDt;iRðXiÞRðXiÞ

0
�, �t ¼ ½Y1ðtÞ � mtðX1Þ; � � � ;

YnðtÞ � mtðXnÞ�
0, and Et ¼ ½ðetðX1Þ �Dt;1Þ=etðX1Þ; . . . ; ðetðXnÞ �Dt;nÞ=

etðXnÞ�
0. We now collect several useful results regarding the nonparametric

partition regression estimator. Details and proofs may be found in Cattaneo
and Farrell (2011). All results given in the appendix implicitly utilize an
appropriate non-singular linear transformation of the polynomial basis,
although the same notation is maintained for simplicity. Cattaneo and
Farrell (2011) give details on the appropriate rotation and demonstrate its
existence under the conditions imposed in Theorem 1.

Lemma 1. Under the conditions of Theorem 1, the following results hold:

(A-1) max1�j�Jd
n
supx2Pj

RjðxÞ
		 		 � Co1.

(A-2) There exists vectors gm;j and ge;j, j ¼ 1; . . . ; Jd
n , such that

max
1�j�Jdn

sup
x2Pj

mtðxÞ � RjðxÞ
0gm;j

		 		 ¼ O J�K^Sm
n


 �

and
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max
1�j�Jdn

sup
x2Pj

1

etðxÞ
� RjðxÞ

0ge;j

				
				 ¼ O J�K^Se

n


 �

(A-3) lminðOj;tÞ � C40.

(A-4) max1�j�Jd
n
Ôj;t � Oj;t

			 			2 ¼ OpðJ
d
n logðJnÞ=nÞ.

(A-5) max1�j�Jd
n
R0j;t�t=ðnqjÞ
			 			2 ¼ OpðJ

9d=7
n logðJnÞ

5=7=nÞ.

(A-6) max1�j�Jd
n
R0jEt=ðnqjÞ
			 			2 ¼ OpðJ

d
n logðJnÞ=nÞ.

(A-7)
max1�j�Jdn supx2Pj

m̂j;tðxÞ � mj;tðxÞ
		 		2 ¼ Op J9d=7

n logðJnÞ
5=7=nþ J

�2K^Sm
n

� 
.

Results (A-3) and (A-4) imply that max1�j�Jd
n
jO�1j;t j � C,

max1�j�Jdn jÔ
�1

j;t j ¼ Opð1Þ, and Pðmax1�j�Jdn j1n;j � 1j ¼ 0Þ ! 1.

Proof of Theorem 1.

Let gm;j and ge;j be as given in (A.4). Observe that

ffiffiffi
n
p
ðm̂t � mtÞ ¼

1ffiffiffi
n
p
Xn
i¼1

ctðYi;Xi;TiÞ þ �n;1 þ �n;2 þ �n;3 þ �n;4 þ �n;5 þ �n;6

where

�n;1 ¼
1ffiffiffi
n
p
XJd

n

j¼1

Xn
i¼1

1�
Dt;i

etðXiÞ

� �
1n;jRjðXiÞ

0
ðR0j;tRj;tÞ

�1R0j;t�t

�n;2 ¼
1ffiffiffi
n
p
XJd

n

j¼1

Xn
i¼1

1n;j
1

etðXiÞ
� g0e;jRjðXiÞ

� �
Dt;iRjðXiÞ

0
ðR0j;tRj;tÞ

�1R0j;t�t

�n;3 ¼
1ffiffiffi
n
p
XJdn
j¼1

Xn
i¼1

1n;j g0e;jRjðXiÞ �
1

etðXiÞ

� �
1Pj
ðXiÞDt;i½Yi � mtðXiÞ�

�n;4 ¼
1ffiffiffi
n
p
XJd

n

j¼1

Xn
i¼1

Xn
k¼1

1n;jRjðXiÞ
0
ðR0j;tRj;tÞ

�1Dt;kRjðXkÞ mtðXkÞ � RjðXkÞ
0gm;j

� �
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�n;5 ¼
1ffiffiffi
n
p
XJdn
j¼1

Xn
i¼1

1n;j1Pj
ðXiÞ½RðXiÞ

0gm;j � mtðXiÞ�

�n;6 ¼
1ffiffiffi
n
p
XJdn
j¼1

Xn
i¼1

1n;j � 1

 �

1Pj
ðXiÞ

Dt;i½Yi � mtðXiÞ�

etðXiÞ
þ mtðXiÞ

� �
:

Consider each reminder �n;1 � �n;6. First, �n;1 ¼ �n;11 þ �n;12 þ �n;13 with

�n;11 ¼
1ffiffiffi
n
p
XJdn
j¼1

1n;j R0jEt

� 0
O�1j;t Oj;t � Ôj;t

� 

O�1j;t Oj;t � Ôj;t

� 
Ô
�1

j;t R0j;t�t=ðnqjÞ
� 

¼ opð1Þ;

�n;12 ¼ �
1ffiffiffi
n
p
XJdn
j¼1

1n;j R0jEt

� 0
O�1j;t Ôj;t � Oj;t

� 
O�1j;t R0j;t�t=ðnqjÞ

h i
¼ opð1Þ;
(c)
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�n;13 ¼
1ffiffiffi
n
p
XJd

n

j¼1

1n;j R0jEt

� 0
O�1j;t R0j;t�t=ðnqjÞ

h i
¼ opð1Þ;

because

�n;11
		 		 � ffiffiffi

n
p

max
1�j�Jd

n

R0jEt=ðnqjÞ
			 			 max

1�j�Jdn

1n;jÔ
�1

j;t

			 			 max
1�j�Jdn

Ôj;t � Oj;t

			 			2

max
1�j�Jdn

O�1j;t

			 			2 max
1�j�Jd

n

R0j;t�t=ðnqjÞ
			 			

¼
ffiffiffi
n
p

Op½J
3d=2
n logðJnÞ

3=2=n3=2�Op½J
9d=14
n logðJn�

5=14=
ffiffiffi
n
p
Þ ¼ opð1Þ;

and simple variance bounds give E �2n;12

h i
¼ OðJ2d

n =n
2Þ ¼ opð1Þ and E �2n;13

h i
¼

OðJd
n=nÞ ¼ opð1Þ, as E½RjðXiÞEt;ijXi� ¼ 0, E½q�1j Dt;iRjðXiÞRjðXiÞ

0
� Ot;j� ¼ 0,

and E½Dt;iRjðXiÞ�t;ijXi;Ti� ¼ 0.

Next, observe that �n;2 ¼ �n;21 þ �n;22 with

�n;21 ¼ �
1ffiffiffi
n
p
XJd

n

j¼1

1n;j
Xn
i¼1

1

etðXiÞ
� g0e;jRjðXiÞ

� �
Dt;iRjðXiÞ

0Ô
�1

j;t

½Ôj;t � Oj;t�O
�1
j;t ½R

0
j;t�t=ðnqjÞ� ¼ opð1Þ
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�n;22 ¼
1ffiffiffi
n
p
XJdn
j¼1

1n;j
Xn
i¼1

1

etðXiÞ
� g0e;jRjðXiÞ

� �
Dt;iRjðXiÞ

0O�1j;t ½R
0
j;t�t=ðnqjÞ� ¼ opð1Þ;

because

�n;21
		 		 � OðJ�K^Se

n Þ max
1�j�Jdn

1n;jÔ
�1

j;t

			 			 max
1�j�Jd

n

Ôj;t � Oj;t

			 			 max
1�j�Jdn

O�1j;t

			 			

max
1�j�Jdn

R0j;t�t=ðnqjÞ
			 			 1ffiffiffi

n
p
XJdn
j¼1

Xn
i¼1

1Pj
ðXiÞ

¼ OðJ�K^Se
n Þ

ffiffiffi
n
p

Op

½Jd=2
n logðJnÞ

1=2=
ffiffiffi
n
p
�Op½J

9d=14
n logðJnÞ

5=14=
ffiffiffi
n
p
� ¼ opð1Þ

and E �2n;22

h i
¼ OðJ�2K^Se

n Þ ¼ opð1Þ.

Next, �n;3 ¼ opð1Þ because

E½�2n;3� �
XJdn
j¼1

E 1Pj
ðXiÞ g0e;jRðXiÞ �

1

etðXiÞ

� �2
½YiðtÞ � mtðXiÞ�

2

( )

¼ O J�2K^Se
n


 �
¼ oð1Þ:

Next, �n;4 ¼ opð1Þ because

�n;4
		 		 � ffiffiffi

n
p

OðJ�K^Sm
n Þ

Jd
n

n2

XJdn
j¼1

Xn
i¼1

Xn
k¼1

1n;jRjðXiÞ
0Ô
�1

j;t Dt;kRjðXkÞ

�
ffiffiffi
n
p

OpðJ
�K^Sm
n Þ

Jd
n

n2

XJd
n

j¼1

Xn
i¼1

Xn
k¼1

1Pj
ðXiÞ1Pj

ðXkÞ

¼
ffiffiffi
n
p

OpðJ
�K^Sm
n Þ ¼ opð1Þ:

Next, �n;5 ¼ opð1Þ because

�n;5
		 		 � ffiffiffi

n
p

O J�K^Sm
n


 � 1
n

XJd
n

j¼1

Xn
i¼1

1Pj
ðXiÞ ¼

ffiffiffi
n
p

O J�K^Sm
n


 �
:

Finally, �n;6 ¼ opð1Þ because Pðmax1�j�Jdn j1n;j � 1j ¼ 0Þ ! 1. �
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Proof of Theorem 2.

For V̂W ;½t;s�, first define ~Sj;t ¼ n�1
Pn

i¼1RjðXiÞRjðXiÞ
0Dt;i½Yi � mtðXiÞ�

2

and ~Lj ¼ ð1=nqjÞ
Pn

i¼1 RjðXiÞDt;i=etðXiÞ, then note that

V̂W ;½t;t� ¼
1

n

Xn
i¼1

1n;j
Dt;i�2t;i
etðXiÞ

þ �W ;n;1 þ �W ;n;2 þ �W ;n;3 þ �W ;n;4 þ �W ;n;5

where

�W ;n;1 ¼
XJdn
j¼1

1n;j L̂
0

jÔ
�1

tj Ŝtj � ~Stj

� 
Ô
�1

tj L̂j

�W ;n;2 ¼
XJdn
j¼1

1n;j L̂
0

jÔ
�1

tj
~StjÔ

�1

tj L̂j � ~Lj


 �
þ L̂j � ~Lj


 �0
Ô
�1

tj
~StjÔ

�1

tj
~Lj

h i

�W ;n;3 ¼
XJdn
j¼1

1n;j ~L
0

jÔ
�1

tj
~StjÔ

�1

tj

1

nqj

Xn
i¼1

RjðXiÞDt;i
1

etðXiÞ
� RjðXiÞ

0ge;j

� �( )

�W ;n;4 ¼
XJd

n

j¼1

1n;j
1

nqj

Xn
i¼1

RjðXiÞ
0Dt;i

1

etðXiÞ
� RjðXiÞ

0ge;j

� �( )0
Ô
�1

tj
~Stjge;j

�W ;n;5 ¼
1

n

XJdn
j¼1

1n;j
Xn
i¼1

1Pj
ðXiÞDt;i�

2
i RjðXiÞ

0ge;j �
1

etðXiÞ

� �
RjðXiÞ

0ge;j þ
1

etðXiÞ

� �
:

Now, �W ;n;1

		 		 � �W ;n;11

		 		þ �W ;n;12

		 		 ¼ opð1Þ, where applying (A-7).

�W ;n;11

		 		¼ X
Jd
n

j¼1

1n;j L̂
0

jÔ
�1

tj

1

n

Xn
i¼1

2RjðXiÞRjðXiÞ
0Dt;i�i m̂tjðXiÞ�mtðXiÞ

� �( )
Ô
�1

tj L̂j

						
						

�C max
1� j� Jdn

L̂j

		 		2 max
1�j� Jd

n

1n;jÔ
�1

tj

			 			2 sup
x2w
jm̂tðxÞ�mðxÞj

XJdn
j¼1

Xn
i¼1

1Pj
ðXiÞDt;ij�t;ij=n¼opð1Þ

and similarly �W ;n;12

		 		¼opð1Þ.
Next, �W ;n;2 ¼ opð1Þ because
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�W ;n;2

		 		 � 2 max
1�j�Jd

n

L̂j

		 		þ ~Lj

		 		
 !

max
1�j�Jd

n

1n;jÔ
�1

tj

			 			2
 !

� max
1�j�Jdn

1

nqj

Xn
i¼1

RjðXiÞ 1�
Dt;i

etðXiÞ

� �					
					

( )

�
XJdn
j¼1

Xn
i¼1

RjðXiÞRjðXiÞ
0Dt;i�

2
i

		 		=n

¼ Opð1ÞOpð1ÞOp
Jd
n log Jn

n

� �1=2
" #

Opð1Þ ¼ opð1Þ;

where

E
XJd

n

j¼1

Xn
i¼1

RjðXiÞRjðXiÞ
0Dt;i�

2
i

		 		=n
2
4

3
5�C sup

x2x
RðxÞ
		 		2� �

1

n

XJd
n

j¼1

Xn
i¼1

E 1Pj
ðXiÞ

� �
¼Oð1Þ:

Next, �W ;n;3¼opð1Þ because

�W ;n;3

		 		 � max
1�j�Jd

n

~Lj

		 		
 !

max
1�j�Jd

n

1n;jÔ
�1

tj

			 			2
 !

�
XJd

n

j¼1

1

n2qj

Xn
i¼1

Xn
l¼1

jRjðXlÞRjðXlÞ
0
j

Dt;l�
2
l RjðXiÞ

1

etðXiÞ
� RjðXiÞ

0ge;j

� �				
				

¼ Op J�K^Se
n


 �
¼ opð1Þ;

since

E
XJdn
j¼1

1

n2qj

Xn
i¼1

Xn
l¼1

RjðXlÞRjðXlÞ
0

		 		
8<
:
Dt;l�

2
l RjðXiÞ

1

etðXiÞ
� RjðXiÞ

0ge;j

� �				
				
�

¼ Op 1þ
Jd
n

n

� �
J�K^Se
n

� �
¼ O J�K^Se

n


 �
:

Identical reasoning shows �W ;n;4

		 		 ¼ opð1Þ and �W ;n;5

		 		 ¼ opð1Þ. Hence
V̂W ;½t;s� ¼ VW ;½t;s� þ opð1Þ, as Pðmin1�j�Jdn1n;j ¼ 1Þ ! 1.
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Now consider the ‘‘between’’ term of the variance estimator. For
V̂B;½t;s�, note that

V̂B;½t;s� ¼
1

n

Xn
i¼1

m̂tðXiÞm̂sðXiÞ � m̂s
1

n

Xn
i¼1

m̂tðXiÞ � m̂t
1

n

Xn
i¼1

m̂sðXiÞ þ m̂sm̂t

¼
1

n

Xn
i¼1

mtðXiÞmsðXiÞ � m̂s
1

n

Xn
i¼1

mtðXiÞ � m̂t
1

n

Xn
i¼1

msðXiÞ þ m̂sm̂t

þ �B;n;1 þ �B;n;2 þ �B;n;3 þ �B;n;4 þ �B;n;5;

where

�B;n;1 ¼
1

n

Xn
i¼1

m̂tðXiÞ � mtðXiÞ
� �

m̂sðXiÞ � msðXiÞ
� �

�B;n;2 ¼
1

n

Xn
i¼1

mtðXiÞ m̂sðXiÞ � msðXiÞ
� �

�B;n;3 ¼
1

n

Xn
i¼1

m̂tðXiÞ � mtðXiÞ
� �

msðXiÞ

�B;n;4 ¼ � m̂s
1

n

Xn
i¼1

m̂tðXiÞ � mtðXiÞ
� �

�B;n;5 ¼ � m̂t
1

n

Xn
i¼1

m̂sðXiÞ � msðXiÞ
� �

:

Thus, because m̂� m ¼ opð1Þ and Result (A-7) holds under the
assumptions of the theorem, �B;n;k ¼ opð1Þ for k ¼ 1; . . . ; 5, and V̂B;½t;s� ¼

VB;½t;s� þ opð1Þ as stated. �
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