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A B S T R A C T

The density weighted average derivative (DWAD) of a regression function is a canonical
parameter of interest in economics. Classical first-order large sample distribution theory for
kernel-based DWAD estimators relies on tuning parameter restrictions and model assumptions
that imply an asymptotic linear representation of the point estimator. These conditions can
be restrictive, and the resulting distributional approximation may not be representative of the
actual sampling distribution of the statistic of interest. In particular, the approximation is not
robust to bandwidth choice. Small bandwidth asymptotics offers an alternative, more general
distributional approximation for kernel-based DWAD estimators that allows for, but does not
require, asymptotic linearity. The resulting inference procedures based on small bandwidth
asymptotics were found to exhibit superior finite sample performance in simulations, but
no formal theory justifying that empirical success is available in the literature. Employing
Edgeworth expansions, this paper shows that small bandwidth asymptotic approximations
lead to inference procedures with higher-order distributional properties that are demonstrably
superior to those of procedures based on asymptotic linear approximations.

1. Introduction

Identification, estimation, and inference in the context of semiparametric models has a long tradition in econometrics (Powell,
1994). Canonical two-step semiparametric estimands are finite dimensional functionals of some other unknown infinite dimensional
parameters in the model (e.g., a density or regression function). A leading example of such a finite dimensional estimand is the
density weighted average derivative (DWAD) of a regression function. This paper seeks to honor the many contributions of Jim
Powell to semiparametric theory in econometrics by juxtaposing the higher-order distributional properties of Powell et al.’s (1989)
two-step kernel-based DWAD estimator under two alternative large sample approximation regimes: one based on the classical
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asymptotic linear representation, and the other based on a more general quadratic distributional approximation known as small
bandwidth asymptotics.1

In a landmark contribution, Powell et al. (1989) proposed a kernel-based DWAD estimator and obtained first-order, asymptoti-
cally linear distribution theory employing ideas from the U-statistics literature in statistics to develop valid inference procedures in
large samples. This work sparked a wealth of subsequent developments in the econometrics literature: Robinson (1995) obtained
Berry–Esseen bounds, Powell and Stoker (1996) considered mean square error expansions, Nishiyama and Robinson (2000, 2001,
2005) developed Edgeworth expansions, and Newey et al. (2004) investigated bias properties, just to mention a few contributions.
The two-step semiparametric estimator in this literature employs a preliminary kernel-based estimator of a density function, which
requires choosing two main tuning parameters: a bandwidth and a kernel function. The ‘‘optimal’’ choices for these tuning parameters
depend on the goal of interest (e.g., point estimation vs. inference), as well as on the features of the underlying data generating
process (e.g., smoothness of the unknown density and dimension of the covariates).

Classical first-order distribution theory for kernel-based DWAD estimators has focused on cases where tuning parameter
restrictions and model assumptions imply an asymptotic linear representation of the two-step semiparametric point estimator (see
Bickel et al., 1993; Newey and McFadden, 1994; Ichimura and Todd, 2007, for overviews). That is, the two-step estimator is
approximated by a sample average based on an influence function. This approach can be used to construct semiparametrically
efficient inference procedures, but requires potentially high smoothness levels of the underlying unknown functions, thereby forcing
the use of higher-order kernels or other debiasing techniques. Further, the implied distributional approximation may not be ‘‘robust’’
to tuning parameter choices and/or model features. More specifically, the limiting distribution emerging from the asymptotic linear
representation of the centered and scaled point estimator is invariant to the way that the preliminary nonparametric estimators are
constructed. At its core, an asymptotic linear approximation assumes away the contribution of additional terms forming the statistic
of interest, despite the fact that these terms do contribute to the sampling variability of the two-step semiparametric estimator and,
more importantly, do reflect the impact of tuning parameter choices in finite samples.

Cattaneo et al. (2014b) proposed an alternative distributional approximation for kernel-based DWAD estimators that allows for,
but does not require, asymptotic linearity. The idea is to capture the joint contribution to the sampling distribution of both linear
and quadratic terms forming the kernel-based DWAD estimator, because the quadratic term explicitly captures the effect of the
choice of bandwidth and kernel function. To operationalize this idea, Cattaneo et al. (2014b) introduced an asymptotic experiment
where the bandwidth sequence is allowed (but not required) to vanish at a speed that would render the classical asymptotic linear
representation invalid because the quadratic term becomes first order even in large samples, which they termed small bandwidth
asymptotics. This framework was carefully developed to obtain a distributional approximation that explicitly depends on both linear
and quadratic terms, thereby forcing a more careful analysis of how the nonparametric first stage contributes to the sampling
distribution of the statistic.

Inference methods based on small bandwidth asymptotics for kernel-based DWAD estimators were found to perform well in
simulations (Cattaneo et al., 2010, 2014b,a), but no formal justification for this finite sample success is available in the literature.
Methodologically, this alternative distributional approximation leads to a new way of conducting inference (e.g., constructing
confidence intervals) because the original standard error formula proposed by Powell et al. (1989) must be modified to make the
asymptotic approximation valid across the full range of allowable bandwidths (including the region where asymptotic linearity
fails). Theoretically, however, the empirical success of small bandwidth asymptotics could come from two distinct sources: (i) it
could deliver a better distributional approximation to the sampling distribution of the point estimator; or (ii) it could deliver a
better distributional approximation to the sampling distribution of the studentized t-statistic because the standard error formula is
modified.

Employing Edgeworth expansions (Bhattacharya and Rao, 1976; Hall, 1992), this paper shows that the higher-order distributional
properties of inference procedures motivated by the small bandwidth asymptotics approximation framework are demonstrably
superior to those of procedures motivated by asymptotic linear approximations. We study both standardized and studentized
estimators and show that those emerging from the small bandwidth regime offer higher-order corrections, as measured by the second
cumulant underlying their Edgeworth expansions. An immediate implication of our results is that the small bandwidth asymptotic
framework simultaneously enjoys two advantages: delivering a better distributional approximation (Theorem 1, standardized t-
statistic) and leading to a better standard error construction (Theorem 2, studentized t-statistic). Therefore, our results have
theoretical and practical implications for empirical work in economics, in addition to providing a theory-based explanation for prior
simulation findings documenting better numerical performance of inference procedures motivated by small bandwidth asymptotics
relative to those motivated by classical asymptotically linear distributional approximations.

The closest antecedent to our work is Nishiyama and Robinson (2000, 2001), who also studied Edgeworth expansions for
kernel-based DWAD estimators. Their expansions, however, were motivated by the asymptotic linear approximation of the point
estimator, and hence cannot be used to evaluate the distributional approximation emerging from the alternative small bandwidth
asymptotic regime. Therefore, from a technical perspective, this paper also offers novel Edgeworth expansions that allow for
different standardization and studentization schemes, thereby allowing us to plug-and-play when juxtaposing the two asymptotic
approximation frameworks. More specifically, Theorem 1 below concerns a generic standardized t-statistic and is proven based on

1 Jim Powell’s contributions to semiparametric theory are numerous. Honoré and Powell (1994), Powell and Stoker (1996), Blundell and Powell
2004), Aradillas-Lopez et al. (2007), Ahn et al. (2018), and Graham et al. (2024) are some of the most closely connected to the our work: these papers
2

mploy U-statistics methods for two-step kernel-based estimators similar to those considered herein. See Powell (2017) for more discussion and references.
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Appendix A, which may be of independent technical interest due to is generality. In contrast, Theorem 2 below concerns a more
specialized class of studentized t-statistics because establishing valid Edgeworth expansions is considerably harder when dealing
with studentization.

The idea of employing more general asymptotic approximation frameworks that do not enforce asymptotic linearity for two-step
emiparametric estimators has also featured in other contexts: (i) semi-linear series-based, many covariates, and many instruments
stimation (Cattaneo et al., 2018a,b), (ii) non-linear two-step semiparametric estimation (Cattaneo et al., 2013; Cattaneo and
ansson, 2018; Cattaneo et al., 2019; Cattaneo and Jansson, 2022), and (iii) network estimation (Matsushita and Otsu, 2021). While
ur theoretical developments and results focus specifically on the case of kernel-based DWAD estimation, our main conceptual
onclusions can be extrapolated to those settings as well. The main takeaway is that employing alternative asymptotic frameworks
an deliver improved inference with smaller higher-order distributional approximation errors, thereby offering more robust inference
rocedures in finite samples. Furthermore, our theoretical and methodological results can also be leveraged to study the higher-order
istributional properties of bootstrap-based methods for inference. Although a complete theoretical analysis is beyond the scope of
his paper, we provide further discussion about the bootstrap in Section 4.

The paper continues as follows. Section 2 introduces the setup and main assumptions. Section 3 reviews the classical first-order
istributional approximation based on asymptotic linearity and the more general small bandwidth distributional approximation,
long with their corresponding choices of standard error formulas. Section 4 presents the main results of our paper. Section 5
oncludes. The appendix is organized in four parts: Appendix A provides a self-contained generic Edgeworth expansion for second-
rder U-statistics, which may be of independent technical interest, and is proven in Appendix B, Appendix C gives the proof of
heorem 1, and Appendix D gives the proof of Theorem 2.

. Setup and assumptions

Suppose 𝑍𝑖 = (𝑌𝑖, 𝑋′
𝑖 )
′, 𝑖 = 1,… , 𝑛, is a random sample from the distribution of the random vector 𝑍 = (𝑌 ,𝑋′)′, where 𝑌 is an

outcome variable and 𝑋 takes values on R𝑑 with Lebesgue density 𝑓 . We consider

𝜃 ∶= E[𝑓 (𝑋)𝑔̇(𝑋)], 𝑔(𝑋) ∶= E[𝑌 |𝑋],

the DWAD of the regression function 𝑔, where, for any (differentiable) function 𝑎, 𝑎̇(𝑥) denotes 𝜕𝑎(𝑥)∕𝜕𝑥, and where existence of 𝜃
s implied by parts (b) and (c) of the following assumption, which collects the regularity conditions under which our subsequent
nalysis will proceed.

ssumption 1. For some 𝑆 ≥ 2, the following are satisfied:

(a) E[|𝑌 |3] < ∞;
(b) 𝑓 is (𝑆 + 1) times differentiable, and 𝑓 and its first (𝑆 + 1) derivatives are bounded;
(c) 𝑔 is (𝑆 + 1) times differentiable and its first three derivatives are bounded;
(d) 𝑒 and its first (𝑆 + 1) derivatives are bounded, where 𝑒(𝑋) ∶= 𝑓 (𝑋)𝑔(𝑋);
(e) E[V(𝑌 |𝑋)𝑓 (𝑋)] > 0 and 𝛴 ∶= V[𝜓(𝑍)] is positive definite, where 𝜓(𝑍) ∶= 2[𝑒̇(𝑋) − 𝑌 ̇𝑓 (𝑋) − 𝜃] and where V[⋅] denotes the

variance;
(f) 𝑣 is twice differentiable, its first two derivatives are bounded, and 𝑣 ̇𝑓 and E[|𝑌 |3|𝑋]𝑓 (𝑋) are bounded, where 𝑣(𝑋) ∶=

E[𝑌 2
|𝑋];

(g) lim sup
‖𝑥‖→∞[1 + 𝑣(𝑥)]𝑓 (𝑥) = 0, where ‖ ⋅ ‖ is the Euclidean norm; and

(h) Cramér Condition: For every 𝗏 ∈ R𝑑 ,

lim sup
|𝑡|→∞

|

|

|

E
[

exp
(

𝗂𝑡𝜓𝗏(𝑍)
)]

|

|

|

< 1,

where 𝜓𝗏(𝑍) ∶= 𝗏′𝜓(𝑍) and 𝗂2 ∶= −1.

Under Assumption 1 and using integration by parts, the DWAD vector can be expressed as

𝜃 = −2E[𝑌 ̇𝑓 (𝑋)],

hich motivates the celebrated plug-in analog estimator of Powell et al. (1989) given by

𝜃 = −2𝑛−1
∑

1≤𝑖≤𝑛
𝑌𝑖
𝜕
𝜕𝑥
𝑓𝑖(𝑋𝑖), 𝑓𝑖(𝑥) = (𝑛 − 1)−1

∑

1≤𝑗≤𝑛
𝑗≠𝑖

1
ℎ𝑑
𝐾

(𝑋𝑗 − 𝑥
ℎ

)

,

where 𝑓𝑖(⋅) is a ‘‘leave-one-out’’ kernel density estimator employing a symmetric and differentiable kernel function 𝐾 ∶ R𝑑 → R and
a positive vanishing (bandwidth) sequence ℎ.

The estimator 𝜃 can be expressed as a second-order U-statistic with an 𝑛-varying kernel:

𝜃 =
(

𝑛
2

)−1
∑

𝑈𝑖𝑗 , 𝑈𝑖𝑗 ∶= −ℎ−𝑑−1𝐾̇
(𝑋𝑖 −𝑋𝑗

ℎ

)

(𝑌𝑖 − 𝑌𝑗 ). (2.1)
3

1≤𝑖<𝑗≤𝑛



Journal of Econometrics 252 (2025) 105855M.D. Cattaneo et al.

(

Our analysis of 𝜃 is based on this representation and proceeds under the following assumption about the kernel function.2

Assumption 2. For some 𝑃 ≥ 2 and some {𝜇𝑎 ∶ 𝑎 ∈ Z𝑑+, [𝑎] = 𝑃 } ⊆ R, the following are satisfied:

(a) 𝐾 is even, differentiable, and 𝐾̇ is bounded;
(b) ∫R𝑑 𝐾̇(𝑢)𝐾̇(𝑢)′d𝑢 is positive definite; and
(c) ∫R𝑑 |𝐾(𝑢)|(1 + ‖𝑢‖𝑃 )d𝑢 + ∫R𝑑 ‖𝐾̇(𝑢)‖(1 + ‖𝑢‖2)d𝑢 <∞ and

∫R𝑑
𝑢𝑎𝐾(𝑢)d𝑢 =

⎧

⎪

⎨

⎪

⎩

1, if [𝑎] = 0,
0, if 0 < [𝑎] < 𝑃
𝜇𝑎, if [𝑎] = 𝑃 ,

where 𝑎 ∈ Z𝑑+ is a multi-index.

3. First-order distribution theory

Before presenting our main results concerning the higher-order distributional properties of different statistics based on 𝜃, we
review conventional and alternative first-order asymptotic distributional approximations, as well as the distinct variance estimation
methods emerging from each of those approximation frameworks. Limits are taken as ℎ → 0 and 𝑛→ ∞ unless otherwise noted, →P
denotes convergence in probability, and ⇝ denotes convergence in law.

3.1. Distributional approximation

Under appropriate restrictions on ℎ and 𝐾, the estimator 𝜃 is asymptotically linear with influence function 𝜓 and asymptotic
variance 𝛴. More precisely, Powell et al. (1989) showed that if Assumptions 1 and 2 hold and if 𝑛ℎ2(𝑃∧𝑆) → 0 and 𝑛ℎ𝑑+2 → ∞
(where 𝑎 ∧ 𝑏 denotes min(𝑎, 𝑏)), then

√

𝑛(𝜃 − 𝜃) = 𝑛−1∕2
∑

1≤𝑖≤𝑛
𝜓(𝑍𝑖) + 𝑜P(1) ⇝  (0, 𝛴). (3.1)

A proof of (3.1) can be based on the 𝑈 -statistic representation in (2.1) and its Hoeffding decomposition 𝜃 = E[𝑈𝑖𝑗 ] + 𝐿̄ + 𝑄̄, where
𝐿̄ and 𝑄̄ are mean zero random vectors given by

𝐿̄ ∶= 𝑛−1
∑

1≤𝑖≤𝑛
𝐿𝑖, 𝐿𝑖 ∶= 2(E[𝑈𝑖𝑗 |𝑍𝑖] − E[𝑈𝑖𝑗 ]),

and

𝑄̄ ∶=
(

𝑛
2

)−1
∑

1≤𝑖<𝑗≤𝑛
𝑄𝑖𝑗 , 𝑄𝑖𝑗 ∶= 𝑈𝑖𝑗 − E[𝑈𝑖𝑗 |𝑍𝑖] − E[𝑈𝑖𝑗 |𝑍𝑗 ] + E[𝑈𝑖𝑗 ],

respectively: because E[𝑈𝑖𝑗 ] = 𝜃 + 𝑂(ℎ𝑃∧𝑆 ) and V[𝑄̄] = 𝑂(𝑛−2ℎ−𝑑−2), we have

√

𝑛(𝜃 − 𝜃) = 𝑛−1∕2
𝑛
∑

𝑖=1
𝐿𝑖 + 𝑂P

(

√

𝑛ℎ𝑃∧𝑆 + 1
√

𝑛ℎ𝑑+2

)

,

from which the result (3.1) follows upon noting that V[𝐿𝑖−𝜓(𝑍𝑖)] = 𝑂(ℎ𝑃∧𝑆 ). Using Edgeworth expansions, Nishiyama and Robinson
(2000, 2001) studied the quality of the distributional approximation implied by (3.1); their result is contained as a special case of
our Theorem 1.

The Hoeffding decomposition and subsequent analysis of each of its terms shows that the estimator admits a bilinear form
representation in general, which then is reduced to a sample average approximation by assuming a bandwidth sequence and kernel
shape that makes both the misspecification error (smoothing bias) and the variability introduced by 𝑄̄ (a ‘‘quadratic’’ term) negligible
in large samples. As a result, provided that such tuning parameter choices are feasible, the estimator will be asymptotically linear.

Asymptotic linearity of a semiparametric estimator has several distinct features that may be considered attractive from a
theoretical point of view. In particular, it is a necessary condition for semiparametric efficiency, and it leads to a limiting distribution
that is invariant to the choice of the first-step nonparametric estimator entering the two-step semiparametric procedure (Newey,
1994). However, insisting on asymptotic linearity may also have its drawbacks because it requires several potentially strong
assumptions, and because it leads to a large sample theory that may not accurately represent the finite sample behavior of the
statistic. In the case of 𝜃, asymptotic linearity requires 𝑃 > 2 unless 𝑑 = 1; that is, the use of higher-order kernels or similar
debiasing techniques (see, e.g., Chernozhukov et al., 2022, and references therein) is necessary in order to achieve asymptotic
linearity. In addition, asymptotic linearity leads to a limiting experiment which is invariant to the particular choices of smoothing
(𝐾) and bandwidth (ℎ) tuning parameters involved in the construction of the estimator. As a result, large sample distribution theory

2 In Assumption 2(c) and elsewhere, we employ standard multi-index notation: For 𝑎 ∶= (𝑎1 ,… , 𝑎𝑑 )′ ∈ Z𝑑+, we have (i) [𝑎] ∶= 𝑎1 +⋯ + 𝑎𝑑 , (ii) 𝑎! ∶= 𝑎1!… 𝑎𝑑 !,
𝑎 𝑎1 𝑎𝑑 ′ 𝑑 𝑎 𝑎 [𝑎] 𝑎1 𝑎𝑑 𝑑
4

iii) 𝑥 ∶= 𝑥1 … 𝑥𝑑 for 𝑥 ∶= (𝑥1 ,… , 𝑥𝑑 ) ∈ R , and (iv) 𝜕 𝑞(𝑥)∕𝜕𝑥 ∶= 𝜕 𝑞(𝑥)∕(𝜕𝑥1 … 𝜕𝑥𝑑 ) for (sufficiently smooth) 𝑞 ∶ R → R.
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based on (or implying) asymptotic linearity is silent with respect to the impact that tuning parameter choices may have on the finite
sample behavior of the two-step semiparametric statistic.

To address the aforementioned limitations of distribution theory based on asymptotic linearity, Cattaneo et al. (2014b) proposed a
ore general distributional approximation for kernel-based DWAD estimators that accommodates, but does not enforce, asymptotic

inearity. The idea is to characterize the joint asymptotic distributional features of both the linear (𝐿̄) and quadratic (𝑄̄) terms,
and in the process develop a more general first-order asymptotic theory that allows for weaker assumptions than those imposed in
the classical asymptotically linear distribution theory. Formally, if Assumptions 1 and 2 hold, and if (𝑛ℎ𝑑+2 ∧ 1)𝑛ℎ2(𝑃∧𝑆) → 0 and
𝑛2ℎ𝑑 → ∞, then

V[𝜃]−1∕2(𝜃 − 𝜃) ⇝  (0, 𝐼), (3.2)

here V[𝜃] = V[𝐿̄] + V[𝑄̄] with

V[𝐿̄] = 𝑛−1
[

𝛴 + 𝑂
(

ℎ𝑃∧𝑆
)]

nd

V[𝑄̄] =
(

𝑛
2

)−1
ℎ−𝑑−2

[

𝛥 + 𝑂(ℎ2)
]

, 𝛥 ∶= 2E[V(𝑌 |𝑋)𝑓 (𝑋)]∫R𝑑
𝐾̇(𝑢)𝐾̇(𝑢)′d𝑢.

This more general distributional approximation was developed explicitly in an attempt to better characterize the finite sample
ehavior of 𝜃. The result in (3.2) shows that the conditions on the bandwidth sequence may be considerably weakened without
nvalidating the limiting Gaussian distribution, although the asymptotic variance formula changes. Importantly, if 𝑛ℎ𝑑+2 is bounded
hen 𝜃 is no longer asymptotically linear and its limiting distribution will cease to be invariant with respect to the underlying
reliminary nonparametric estimator. In particular, if 𝑛ℎ𝑑+2 → 𝑐 > 0 then 𝜃 is root-𝑛 consistent, but not asymptotically linear. The
ias of the estimator is also controlled in a different way because the bandwidth is allowed to be ‘‘smaller’’ than usual, which may
emove the need for higher-order kernels. Interestingly, (3.2) allows for the point estimator to not even be consistent for 𝜃, which
ccurs for sufficiently small bandwidth sequences.

Beyond the aforementioned technical considerations, the result in (3.2) can conceptually be interpreted as a more refined first-
rder distributional approximation for 𝜃, which by relying on a quadratic approximation (i.e., accounting for the contributions of
oth 𝐿̄ and 𝑄̄) is expected to offer a ‘‘better’’ distributional approximation than approximations relying on asymptotic linearity
i.e., accounting only for the contribution of 𝐿̄). The idea of standardizing a U-statistic by the joint variance of the linear and
uadratic terms underlying its Hoeffding decomposition can be traced back to the original paper of Hoeffding (1948, p. 307).
imulation evidence reported in Cattaneo et al. (2010, 2014b,a) corroborated those conceptual interpretations numerically, but no
ormal justification is available in the literature. Theorem 1 below will offer the first theoretical result in the literature highlighting
pecific robustness features of the distributional approximation in (3.2) by showing that such approximation has a demonstrably
maller higher-order distributional approximation error.

.2. Variance estimation

Motivated by the asymptotic linearity result (3.1), Powell et al. (1989) also proposed the ‘‘plug-in’’ variance estimator

𝛴 ∶= 𝑛−1
∑

1≤𝑖≤𝑛
𝐿̂𝑖𝐿̂

′
𝑖 , 𝐿̂𝑖 ∶= 2

[

(𝑛 − 1)−1
∑

1≤𝑗≤𝑛
𝑗≠𝑖

𝑈𝑖𝑗 − 𝜃
]

,

nd proved its consistency (i.e., 𝛴 →P 𝛴) under the same bandwidth sequences required for asymptotic linearity (i.e., assuming
ℎ2(𝑃∧𝑆) → 0 and 𝑛ℎ𝑑+2 → ∞). Combining this consistency result with (3.1), we obtain the following result about a studentized
ersion of 𝜃:

𝑉 −1∕2
𝙰𝙻

(𝜃 − 𝜃) ⇝  (0, 𝐼), 𝑉𝙰𝙻 ∶= 𝑛−1𝛴. (3.3)

sing Edgeworth expansions, Nishiyama and Robinson (2000, 2001) studied the quality of the distributional approximation implied
y (3.3); their result is contained as a special case of our Theorem 2.

Complementing the small bandwidth asymptotic representation (3.2), Cattaneo et al. (2014b) showed that

𝑉𝙰𝙻 = 𝑛−1[𝛴 + 𝑜P(1)] + 2
(

𝑛
2

)−1
ℎ−𝑑−2[𝛥 + 𝑜P(1)],

hich implies among other things that the consistency result 𝛴 →P 𝛴 is valid only if 𝑛ℎ𝑑+2 → ∞; otherwise, 𝛴 is in general
symptotically upwards biased relative to V[𝜃] in (3.2). Because 𝛴 is asymptotically equivalent to the jackknife variance estimator
f 𝜃, Cattaneo et al. (2014a) also noted that the asymptotic bias of 𝛴 is a consequence of a more generic phenomena underlying
ackknife variance estimators studied in Efron and Stein (1981). See also Matsushita and Otsu (2021) for related discussion.

To conduct asymptotically valid inference under the more general small bandwidth asymptotic regime, Cattaneo et al. (2014b)
roposed several ‘‘debiased’’ variance estimators, including

𝑉𝚂𝙱 ∶= 𝑛−1𝛴 −
(

𝑛
2

)−1
ℎ−𝑑−2𝛥, 𝛥 ∶= ℎ𝑑+2

(

𝑛
2

)−1
∑

𝑈𝑖𝑗𝑈
′
𝑖𝑗 ,
5

1≤𝑖<𝑗≤𝑛
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and showed that 𝛥→P 𝛥 under the same bandwidth sequences required for (3.2) to hold (i.e., assuming 𝑛ℎ2(𝑃∧𝑆) → 0 and 𝑛2ℎ𝑑 → ∞).
he estimator 𝛥 is asymptotically equivalent to the debiasing procedure proposed in Efron and Stein (1981). By design, the result

𝑉 −1∕2
𝚂𝙱

(𝜃 − 𝜃) ⇝  (0, 𝐼) (3.4)

olds under more general conditions than those required for (3.3), suggesting that inference procedures based on 𝑉𝚂𝙱 are more
‘robust’’ than procedures based on 𝑉𝙰𝙻.

Conceptually, robustness manifests itself in two distinct ways. First, the underlying Gaussian distributional approximation holds
nder weaker bandwidth restrictions, a property achieved in part by employing a standardization factor depending explicitly on
uning parameter choices. Second, the new variance estimator 𝑉𝚂𝙱 is obtained from the more general small bandwidth approximation
nd explicitly accounts for the contribution of terms regarded as higher-order under asymptotic linearity.

While not reproduced here to conserve space, the in-depth Monte Carlo evidence reported in Cattaneo et al. (2010, 2014b,a)
lso showed that employing inference procedures based on (3.4) lead to remarkable improvements in terms of ‘‘robustness’’ to
andwidth choice and other tuning inputs, when compared to classical asymptotically linear inference procedures based on (3.3).
heorem 2 below will show formally that the distributional approximation (3.4) has demonstrably smaller higher-order errors than
he distributional approximation (3.3), thereby providing a theory-based explanation for the empirical success of feasible inference
rocedures developed under the small bandwidth approximation framework.

. Higher-order distribution theory

Letting 𝗏 ∈ R𝑑 be a fixed vector and defining 𝜃𝗏 ∶= 𝗏′𝜃, this section presents Edgeworth expansions for standardized and
studentized statistics based on 𝜃𝗏. Section 4.1 studies standardized statistics of the form (𝜃𝗏 − 𝜃𝗏)∕𝜗𝗏, where 𝜃𝗏 ∶= 𝗏′𝜃 and 𝜗𝗏 is an
approximate standard deviation of 𝜃𝗏; that is, 𝜗𝗏 is positive, non-random, and such that (𝜃𝗏−𝜃𝗏)∕𝜗𝗏 is asymptotically standard normal.
The main purpose of studying standardized statistics is to allow us to compare the quality of the distributional approximations (3.1)
and (3.2) based on asymptotic linearity and small bandwidth asymptotics, respectively. Section 4.2 then studies studentized statistics
of the form (𝜃𝗏−𝜃𝗏)∕𝜗𝗏, where 𝜗2𝗏 is (random and) equal to either 𝗏′𝑉𝙰𝙻𝗏 or 𝗏′𝑉𝚂𝙱𝗏. The main purpose of studying studentized statistics
is to allow us to investigate the impact of variance estimation on the quality of the distributional approximations (3.3) and (3.4)
based on asymptotic linearity and small bandwidth asymptotics, respectively.

Nishiyama and Robinson (2000, 2001) obtained valid Edgeworth expansions for the distribution of the standardized and
studentized statistics employing 𝜗2𝗏 = 𝗏′𝛴𝗏∕𝑛 and 𝜗2𝗏 = 𝗏′𝛴𝗏∕𝑛, respectively. Those results were obtained under assumptions implying
asymptotic linearity. Although our main interest is in standardization and studentization schemes whose (first-order) validity does
not require asymptotic linearity, we retain the assumption of asymptotic linearity to ensure a fair comparison; that is, our results are
derived under the same assumptions as those imposed in prior work, in which case all inference procedures are asymptotically valid,
and therefore amenable to juxtaposition. While beyond the scope of this paper, allowing for departures from asymptotic linearity
is an interesting topic for future research.

4.1. Standardized statistics

Suppressing the dependence on 𝗏 and 𝜗𝗏, let

𝐹 (𝑥) ∶= P

[

𝜃𝗏 − 𝜃𝗏
𝜗𝗏

≤ 𝑥

]

, 𝑥 ∈ R,

e the cumulative distribution function (cdf) of (𝜃𝗏 − 𝜃𝗏)∕𝜗𝗏, where 𝜗𝗏 is positive and non-random. Letting 𝛷 denote the standard
ormal cdf, it follows from (3.2) that

sup
𝑥∈R

|𝐹 (𝑥) −𝛷(𝑥)| = 𝑜(1) (4.1)

nder assumptions implying in particular that 𝜔2
𝗏∕𝜗

2
𝗏 → 1, where

𝜔2
𝗏 ∶= V[𝜃𝗏] = 𝑛−1

[

𝜎2𝗏 + 𝑂
(

ℎ𝑃∧𝑆
)]

+
(

𝑛
2

)−1
ℎ−𝑑−2[𝛿2𝗏 + 𝑂(ℎ

2)],

ith 𝜎2𝗏 ∶= 𝗏′𝛴𝗏 and 𝛿2𝗏 ∶= 𝗏′𝛥𝗏.
Our first theorem provides a refinement of (4.1). To state the theorem, let

̇𝑓𝗏(𝑋) ∶= 𝗏′ ̇𝑓 (𝑋), 𝜑𝗏(𝑍) ∶= 𝜓𝗏(𝑍) + 2𝜃𝗏, 𝜂𝗏(𝑍2) ∶= lim
𝑛→∞

E[𝜑𝗏(𝑍1)𝗏′𝑈12|𝑍2],

nd define the following quantities (all of which are finite under the assumptions of Theorem 1):

𝛽𝗏 ∶= 2(−1)𝑃
∑

𝑎∈Z𝑑+ ,[𝑎]=𝑃

𝜇𝑎
𝑎!

E
[

𝑔(𝑋) 𝜕
𝑎

𝜕𝑥𝑎
̇𝑓𝗏(𝑋)

]

, 𝜅1,𝗏 ∶= E[𝜓𝗏(𝑍)3],

𝜅2,𝗏 ∶= E[𝜑𝗏(𝑍)𝜂𝗏(𝑍)] − E[𝜑𝗏(𝑍)2]𝜃𝗏 − V[𝜑𝗏(𝑍)]𝜃𝗏.

lso, let 𝜙 denote the standard normal probability density function.
6
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Theorem 1 (Standardization). Suppose Assumptions 1 and 2 hold with 𝑆 ≥ 𝑃 , and that 𝑛ℎ2𝑃 → 0 and 𝑛ℎ𝑑+2∕ log9 𝑛→ ∞. If 𝜗𝗏 is positive
and non-random with 𝜔2

𝗏∕𝜗
2
𝗏 → 1, then

sup
𝑥∈R

|𝐹 (𝑥) − 𝐺(𝑥)| = 𝑜(𝑟𝑛), 𝑟𝑛 ∶=
√

𝑛ℎ𝑃 + 1
𝑛ℎ𝑑+2

+ 1
√

𝑛
,

with

𝐺(𝑥) ∶= 𝛷(𝑥) − 𝜙(𝑥)

[
√

𝑛ℎ𝑃 𝛽𝗏
𝜎𝗏

+
𝜔2
𝗏∕𝜗

2
𝗏 − 1
2

𝑥 +
𝜅1,𝗏 + 𝜅2,𝗏
6
√

𝑛𝜎3𝗏
(𝑥2 − 1)

]

.

The proof of the theorem proceeds by verifying the high-level conditions of more general results presented in Appendix A.
he general results establish a valid Edgeworth expansion for a generic class of U-statistics with 𝑛-varying kernels and may be

of independent theoretical interest. Theorem 1 generalizes Nishiyama and Robinson (2000, Theorem 1) by allowing for a generic
standardization factors 𝜗𝗏 instead of their specific choice

√

𝗏′𝛴𝗏∕𝑛 = 𝜎𝗏∕
√

𝑛. The latter generalization is important for our purposes,
as it enables us to compare the different distributional approximations implied by (3.1) and (3.2).

As is customary with Edgeworth expansions, the square-bracketed term in the function 𝐺 is a ‘‘correction’’ term capturing the
extent to which the first three cumulants of the statistic differ from those of the standard normal distribution. To be specific, the
first and third terms correct for bias and skewness, respectively. None of these correction terms depend on the particular 𝜗𝗏 used for
standardization purposes. In contrast, and as was to be expected, the variance correction term does depend on 𝜗𝗏, being proportional
to 𝜔2

𝗏∕𝜗
2
𝗏 − 1.

The asymptotic linearity result (3.1) suggests setting 𝜗2𝗏 = 𝜎2𝗏∕𝑛. Doing so, and in agreement with Nishiyama and Robinson (2000,
heorem 1), we have

𝜔2
𝗏∕𝜗

2
𝗏 − 1 ≈

2𝛿2𝗏
𝑛ℎ𝑑+2𝜎2𝗏

,

he approximation error being 𝑜(𝑟𝑛). In the display, the term on the right hand side involves 𝛿2𝗏 = lim𝑛→∞ ℎ𝑑+2V[𝗏′𝑄𝑖𝑗𝗏] and is
herefore interpretable as a variance correction term intrinsically associated with approximations based on asymptotic linearity, as
uch approximations ignore the contribution of the ‘‘quadratic’’ terms 𝑄𝑖𝑗 to the variability of 𝜃. Unlike (3.1), the small bandwidth

formulation (3.2) explicitly accounts for the presence of ‘‘quadratic’’ terms and the standardization factor 𝜗2𝗏 = V[𝜃𝗏] = 𝜔2
𝗏 suggested

by the small bandwidth formulation is one for which the variance correction term in 𝐺 vanishes altogether.
Although the details of the results reported here are specific to DWAD estimation, one important qualitative conclusion appears

o generalize: the feature that it can be advantageous (in a higher-order sense) to capture the full variability of a statistic when
pproximating its distribution is known to be shared by certain statistics arising in the context of nonparametric kernel-based density
nd local polynomial regression inference; for details, see Calonico et al. (2018, 2022).

In isolation, Theorem 1 is mostly of theoretical interest, the reason being that it is concerned with standardized (as opposed
o studentized) estimators. The consequences of employing studentization (i.e., replacing 𝜗𝗏 with an estimator) will be explored in

the next subsection. One important qualitative conclusion of that subsection concerns inference. That conclusion can be anticipated
with the help of Theorem 1. We conclude this subsection by doing so.

For any 𝛼 ∈ (0, 1), a natural (albeit infeasible) 100(1 − 𝛼)% two-sided confidence interval for 𝜃𝗏 has endpoints given by 𝜃𝗏 ± 𝑐𝛼𝜗𝗏,
where 𝑐𝛼 ∶= 𝛷−1(1 − 𝛼∕2) and where 𝜗2𝗏 is an approximate variance of 𝜃𝗏. Under the assumptions of Theorem 1, the coverage
probability of this interval satisfies

P
[

𝜃𝗏 − 𝑐𝛼𝜗𝗏 ≤ 𝜃𝗏 ≤ 𝜃𝗏 + 𝑐𝛼𝜗𝗏
]

= 1 − 𝛼 − (𝜔2
𝗏∕𝜗

2
𝗏 − 1)𝜙(𝑐𝛼)𝑐𝛼 + 𝑜(𝑟𝑛),

so to the order considered the coverage error is proportional to the term 𝜔2
𝗏∕𝜗

2
𝗏 − 1 discussed previously and our conclusions about

this term therefore apply directly. In particular, the coverage error of an infeasible interval using 𝜗2𝗏 = V[𝜃𝗏] (as suggested by the
small bandwidth asymptotic result (3.2)) is 𝑜(𝑟𝑛), while the coverage errors of an infeasible intervals using 𝜗2𝗏 = 𝜎2𝗏∕𝑛 (as suggested
by the asymptotic linearity result (3.1)) or its pre-asymptotic counterpart 𝜗2𝗏 = V[𝗏′𝐿𝑖]∕𝑛 are of larger magnitude.

4.2. Studentized statistics

Next, we investigate the role of variance estimation by obtaining Edgeworth expansions for studentized versions of 𝜃. For
specificity, and inspired by (3.3) and (3.4), we compare

𝐹𝙰𝙻(𝑥) ∶= P

[

𝜃𝗏 − 𝜃𝗏
𝜗𝙰𝙻,𝗏

≤ 𝑥

]

, 𝜗2
𝙰𝙻,𝗏 ∶= 𝗏′𝑉𝙰𝙻𝗏

nd

𝐹𝚂𝙱(𝑥) ∶= P

[

𝜃𝗏 − 𝜃𝗏
𝜗𝚂𝙱,𝗏

≤ 𝑥

]

, 𝜗2
𝚂𝙱,𝗏 ∶= 𝗏′𝑉𝚂𝙱𝗏.

tudying 𝐹𝙰𝙻, Nishiyama and Robinson (2000, Theorem 3) found that if the assumptions of Theorem 2 below are satisfied, then

sup ||𝐹𝙰𝙻(𝑥) − 𝐺𝙰𝙻(𝑥)
|

| = 𝑜(𝑟𝑛),
7
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with

𝐺𝙰𝙻(𝑥) ∶= 𝛷(𝑥) − 𝜙(𝑥)

[(
√

𝑛ℎ𝑃 𝛽𝗏
𝜎𝗏

−
3𝜅1,𝗏 + 2𝜅2,𝗏

6
√

𝑛𝜎3𝗏

)

−
𝛿2𝗏

𝑛ℎ𝑑+2𝜎2𝗏
𝑥 −

2𝜅1,𝗏 + 𝜅2,𝗏
6
√

𝑛𝜎3𝗏
(𝑥2 − 1)

]

,

here, once again, the three terms in square brackets correct for bias, variance, and skewness, respectively. In light of the results of
he previous subsection, one would expect the Edgeworth approximation to 𝐹𝚂𝙱 to be similar to 𝐺𝙰𝙻, the only (possible) difference
eing the variance correction term. The following result shows that this is indeed the case.

heorem 2 (Studentization). Suppose Assumptions 1 and 2 hold with 𝑆 ≥ 𝑃 and E[𝑌 6] < ∞, and that 𝑛ℎ2𝑃 → 0 and 𝑛ℎ𝑑+2∕ log9 𝑛→ ∞.
Then

sup
𝑥∈R

|

|

|

𝐹𝚂𝙱(𝑥) − 𝐺𝚂𝙱(𝑥)
|

|

|

= 𝑜(𝑟𝑛),

with

𝐺𝚂𝙱(𝑥) ∶= 𝛷(𝑥) − 𝜙(𝑥)

[(
√

𝑛ℎ𝑃 𝛽𝗏
𝜎𝗏

−
3𝜅1,𝗏 + 2𝜅2,𝗏

6
√

𝑛𝜎3𝗏

)

−
2𝜅1,𝗏 + 𝜅2,𝗏
6
√

𝑛𝜎3𝗏
(𝑥2 − 1)

]

This theorem shows that employing studentization based on small bandwidth asymptotics offers demonstrable improvements in
erms of distributional approximations for the resulting feasible t -test: the variance correction term present in 𝐺𝙰𝙻 is absent from
̂
𝚂𝙱. As in Nishiyama and Robinson (2000, 2001), the result is obtained under the somewhat stronger moment condition E[𝑌 6] <∞

than the condition E[|𝑌 |3] < ∞ of Theorem 1, the purpose of the strengthened condition being to help control the contribution of
the random denominator of the studentized version of 𝜃.

The main practical implication of Theorem 2 can be illustrated by analyzing the coverage error of 100(1−𝛼)% confidence intervals
with endpoints 𝜃𝗏 ± 𝑐𝛼𝜗𝗏. Setting 𝜗𝗏 = 𝜗𝙰𝙻,𝗏 and applying Nishiyama and Robinson (2000, Theorem 3), we have

P
[

𝜃𝗏 − 𝑐𝛼𝜗𝙰𝙻,𝗏 ≤ 𝜃𝗏 ≤ 𝜃𝗏 + 𝑐𝛼𝜗𝙰𝙻,𝗏
]

= 1 − 𝛼 +
2𝛿2𝗏

𝑛ℎ𝑑+2𝜎2𝗏
𝜙(𝑐𝛼)𝑐𝛼 + 𝑜(𝑟𝑛),

hereas setting 𝜗𝗏 = 𝜗𝚂𝙱,𝗏 and applying Theorem 2 gives

P
[

𝜃𝗏 − 𝑐𝛼𝜗𝚂𝙱,𝗏 ≤ 𝜃𝗏 ≤ 𝜃𝗏 + 𝑐𝛼𝜗𝚂𝙱,𝗏
]

= 1 − 𝛼 + 𝑜(𝑟𝑛).

n other words, confidence intervals based on (3.4) are demonstrably superior to those based on (3.3) from a higher-order asymptotic
oint of view. This finding provides a theoretical explanation of the simulation evidence reported in Cattaneo et al. (2014b,a, 2010),
here feasible confidence intervals based on small bandwidth asymptotics were shown to offer better finite sample performance in

erms of coverage error than their counterparts based on classical asymptotic linear approximations.

.3. Discussion and bootstrap-based inference

In the previous subsections, we investigated the higher-order performance of large sample distributional approximations under
wo alternative asymptotic frameworks: asymptotic linearity and small bandwidth asymptotics. We found that the choice of
tudentization matters in terms of distributional approximation errors, even under conditions guaranteeing that asymptotic linearity
olds (𝑛ℎ𝑑+2 → ∞), in which case both asymptotic frameworks are first-order valid. As a consequence, our Edgeworth expansions
reported in Theorems 1 and 2) provide alternative validation of the main conclusions obtained by Cattaneo et al. (2010, 2014b)
sing first-order distributional approximations: in terms of distributional approximation accuracy, the small bandwidth framework
ustifying (3.2) and (3.4) dominates the asymptotic linear framework justifying (3.1) and (3.3).

It is natural to ask whether a similar ranking emerges when employing bootstrap-based inference procedures. Cattaneo et al.
2014a) studied the first-order properties of the nonparametric bootstrap under small bandwidth asymptotics for the kernel-based
WAD estimator, and showed that a similar first-order pattern emerges in that case: Under slightly stronger assumptions than
ssumptions 1 and 2, they showed that if (𝑛ℎ𝑑+2 ∧ 1)𝑛ℎ2(𝑃∧𝑆) → 0 and if 𝑛2ℎ𝑑 → ∞, then

V∗[𝜃∗]−1∕2(𝜃∗ − 𝜃) ⇝P  (0, 𝐼),

here ⇝P denotes weak convergence in probability,

V∗[𝜃∗] = V∗[𝐿̄∗] + V∗[𝑄̄∗], V∗[𝐿̄∗] = 𝑛−1
[

𝛴 + 𝑜P(1)
]

, V∗[𝑄̄∗] = 3
(

𝑛
2

)−1
ℎ−𝑑−2

[

𝛥 + 𝑜P(1)
]

,

and

𝑛−1𝛴∗ = 𝑛−1[𝛴 + 𝑜P(1)] + 4
(

𝑛
2

)−1
ℎ−𝑑−2[𝛥 + 𝑜P(1)], 𝛥∗ = 𝛥 + 𝑜P(1),

with 𝜃∗, 𝐿̄∗, 𝑄̄∗, 𝛴∗ and 𝛥∗ denoting nonparametric bootstrap analogs of 𝜃, 𝐿̄, 𝑄̄, 𝛴 and 𝛥, respectively, and V∗[⋅] denoting the
variance computed conditional on the original data. It follows from those results that under small bandwidth asymptotics the
bootstrap consistently estimates the distribution of a studentized version of 𝜃 when 𝑉 is used for studentization purposes, but not
8
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when 𝑉𝙰𝙻 is. These conclusions are in perfect agreement with those discussed in Section 3, the only notable difference in the details
being that the variability induced by the bootstrap is larger outside the asymptotic linear regime because V∗[𝑄̄∗]∕V[𝑄̄] = 3 + 𝑜P(1).
Furthermore, the second term of the bootstrap-based jackknife variance estimator 𝛴∗ is asymptotically doubled relative to the second
term of the jackknife variance estimator 𝛴.

Nishiyama and Robinson (2005) used Edgeworth expansions to study the properties of inference procedures based on the
nonparametric bootstrap under assumptions implying asymptotic linearity. Based on the findings in this paper and those in Cattaneo
et al. (2014a), we conjecture that analogous conclusions to those obtained herein will be valid for the case of bootstrap-based
inference. While the conceptual parallelism between bootstrap-based inference and the results reported in this paper are clear,
formalizing our conjecture requires substantial additional technical work due to the added complications associated with the data
resampling, and hence we leave the theoretical analysis for future work.

5. Conclusion

Employing Edgeworth expansions, we compared the higher-order properties of two first-order distributional approximations and
their associated confidence intervals for the kernel-based DWAD estimator of Powell et al. (1989). We showed that small bandwidth
asymptotics not only give demonstrably better distributional approximations than those implied by asymptotic linearity, but also
justifies employing a variance estimator for studentization purposes that improves the distributional approximation. The main
takeaway from our results is that in two-step semiparametric settings, and related problems, alternative asymptotic approximations
that capture higher-order terms, which are ignored by more traditional asymptotic linearity-based approximations, can deliver better
distributional approximations and, by implication, more accurate inference procedures in finite samples. See Cattaneo et al. (2018a)
for related discussion.

While beyond the scope of this paper, it would be of interest to develop analogous Edgeworth expansions for more general
linear and non-linear two-step semiparametric procedures employing either Gaussian or resampling approximations under both
conventional and alternative asymptotic frameworks (Cattaneo et al., 2013; Cattaneo and Jansson, 2018; Cattaneo et al., 2019;
Cattaneo and Jansson, 2022). In particular, for the special case of kernel-based DWAD estimators, which is a linear two-step
kernel-based semiparametric estimator, Nishiyama and Robinson (2005) already obtained Edgeworth expansions for bootstrap-
based inference procedures under asymptotic linearity that could be contrasted with those obtained under small bandwidth
asymptotics (Cattaneo et al., 2014a), after establishing more general Edgeworth expansions accounting for the bootstrap.

Appendix A. Second-order U-statistics

Let 𝑈𝑛 be a second-order U-statistic with 𝑛-varying kernel:

𝑈𝑛 ∶=
(

𝑛
2

)−1
∑

1≤𝑖<𝑗≤𝑛
𝑢𝑛(𝑍𝑖, 𝑍𝑗 ),

where 𝑍1, 𝑍2,… are 𝑖.𝑖.𝑑. copies of a random vector 𝑍 and where, for each 𝑛 ≥ 2, 𝑢𝑛 is a permutation symmetric R-valued function.
The main result of this section concerns the distribution of the (approximately) standardized statistic (𝑈𝑛 − 𝜃𝑛)∕𝜗𝑛, where 𝜃𝑛 ∈ R
and 𝜗𝑛 > 0 are non-random. To be specific, dropping the subscript 𝑛 to simplify notation and defining

𝐹 (𝑥) ∶= P
[𝑈 − 𝜃

𝜗
≤ 𝑥

]

, 𝑥 ∈ R,

ur objective is to obtain a valid Edgeworth expansion for 𝐹 .
When stating and proving the result, it is useful to employ the Hoeffding decomposition

𝑈 − 𝜃 = 𝐵 + 𝐿 +𝑄,

here

𝐵 ∶= E[𝑈 ] − 𝜃, 𝐿 ∶= 𝑛−1
𝑛
∑

𝑖=1
𝓁𝑖, 𝑄 ∶=

(

𝑛
2

)−1
∑

1≤𝑖<𝑗≤𝑛
𝑞𝑖𝑗 ,

nd where, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

𝓁𝑖 ∶= 2(E[𝑢(𝑍𝑖, 𝑍𝑗 )|𝑍𝑖] − E[𝑢(𝑍𝑖, 𝑍𝑗 )])

nd

𝑞𝑖𝑗 ∶= 𝑢(𝑍𝑖, 𝑍𝑖) −
1
2
(𝓁(𝑍𝑖) + 𝓁(𝑍𝑗 )) − E[𝑢(𝑍𝑖, 𝑍𝑗 )].

Also, it is useful to define 𝜎2𝓁 ∶= E[𝓁2
1 ], 𝜎

2
𝑞 ∶= E[𝑞212], 𝜘1 ∶= E[𝓁3

1 ], and 𝜘2 ∶= E[𝓁1𝓁2𝑞12], and to note that

𝜔2 ∶= V[𝑈 ] = V[𝐿] + V[𝑄] = 𝑛−1𝜎2𝓁 +
(

𝑛
2

)−1
𝜎2𝑞 = 𝑛−1𝜎2𝓁

[

1 + 𝑂(𝑛−1𝜎2𝑞∕𝜎
2
𝓁)
]

.

heorem A.1. For some 𝑝 ∈ (2, 3], let the following conditions hold:
9
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a

w

C

w

(a) E
[

|𝓁1∕𝜎𝓁|
3
]

= 𝑂(1) and E[|𝑞12∕𝜎𝓁|𝑝] <∞;

(b) 𝑛−1𝜎2𝓁∕𝜔
2 → 1 and 𝜔2∕𝜗2 → 1;

(c) For every 𝑐, 𝑐 > 0,

lim sup
𝑛→∞

sup
𝑐<|𝑡|≤𝑐 log 𝑛

|E[exp(𝗂𝑡𝓁1∕𝜎𝓁)]| < 1.

Then

sup
𝑥∈R

|𝐹 (𝑥) − 𝐺(𝑥)| = 𝑂

(

 + 1
√

𝑛 log 𝑛

)

,

where 𝐺 is the distribution function with characteristic function

𝜒𝐺(𝑡) ∶= exp
(

𝗂𝑡𝛾1 −
𝑡2

2

)

[

1 +
∑

2≤𝑗≤9
(𝗂𝑡)𝑗 𝛾𝑗

]

,

with

𝛾1 ∶=
𝐵
𝜗
, 𝛾2 ∶=

𝜔2 − 𝜗2

2𝜗2
, 𝛾3 ∶=

𝜘1 + 6𝜘2
6𝑛2𝜗3

,

𝛾4 ∶=
𝜔2 − 𝜗2

4𝜗4

(

𝑛
2

)−1
𝜎2𝑞 , 𝛾5 ∶=

1
12𝑛2𝜗5

[

(

𝑛
2

)−1
𝜘1𝜎2𝑞 + 6

(

𝑛−1𝜎2𝓁 − 𝜗2
)

𝜘2

]

,

𝛾6 ∶=
1

6𝑛4𝜗6

[

𝜘1𝜘2 + 12
(

𝑛
2

)−2(𝑛
4

)

𝜘2
2

]

, 𝛾7 ∶= 0,

𝛾8 ∶=
𝑛−1𝜎2𝓁 − 𝜗2

4𝑛4𝜗8

(

𝑛
2

)−2(𝑛
4

)

𝜘2
2 , 𝛾9 ∶=

1
12𝑛6𝜗9

(

𝑛
2

)−2(𝑛
4

)

𝜘1𝜘2
2 ,

nd where

 ∶= 1
𝑛𝜎4𝓁

E[|𝓁2
1𝓁2𝑞12|] +

1
𝑛3∕2𝜎5𝓁

E[|𝓁2
1𝓁

2
2𝑞12|] +

1
𝑛3∕2𝜎3𝓁

E[|𝓁1𝑞212|] +
1

𝑛3∕2𝜎5𝓁
E[|𝓁1𝓁2𝓁3𝑞13𝑞23|]

+ 1
𝑛3∕2𝜎7𝓁

|𝜘2|E[|𝓁2
1𝓁2𝑞12|] +

1
𝑛2𝜎8𝓁

|𝜘2|E[|𝓁2
1𝓁

2
2𝑞12|] +

log𝑝 𝑛
𝑛𝑝𝜎𝑝𝓁

𝑝(log 𝑛),

ith

𝑝(𝑚) ∶=
(

𝑚𝑛E[𝑞212]
)𝑝∕2 + 𝑚E

[

(𝑛E[𝑞212|𝑍1])𝑝∕2
]

+ 𝑚𝑛E
[

|𝑞12|
𝑝]

orollary A.1. If the assumptions of Theorem A.1 hold and if 𝛾1 → 0, then

sup
𝑥∈R

|

|

𝐹 (𝑥) − 𝐺̄(𝑥)|
|

= 𝑂

(

𝛾21 +  + 1
√

𝑛 log 𝑛

)

,

here 𝐺̄ is the distribution function with characteristic function

𝜒𝐺̄(𝑡) ∶= exp
(

− 𝑡
2

2

)

[

1 +
∑

1≤𝑗≤9
(𝗂𝑡)𝑗 𝛾𝑗

]

, 𝛾1 ∶= 𝐵.

Remark A.1. For every 𝑘 ∈ Z+,

1
2𝜋 ∫R

exp
(

−𝗂𝑡𝑥 − 𝑡2

2

)

(𝗂𝑡)𝑘d𝑡 = 𝜙(𝑥)𝐻𝑘(𝑥), 𝑘 ∈ Z+,

where 𝐻𝑘(𝑥) is the 𝑘th order Hermite polynomial (i.e., 𝐻0(𝑘) = 1, 𝐻1(𝑥) = 𝑥, 𝐻2(𝑥) = 𝑥2−1, and so on). Therefore, the characteristic
function 𝜒𝐺̄ from Corollary A.1 can be inverted to obtain the following closed form expression for 𝐺̄:

𝐺̄(𝑥) = 𝛷(𝑥) − 𝜙(𝑥)

[

∑

1≤𝑗≤9
𝛾𝑗𝐻𝑗−1(𝑥)

]

.

Remark A.2. Condition (c) of Theorem A.1 is implied by the following condition:

(c′) For every 𝑐 > 0,

lim sup
𝑛→∞

sup
|𝑡|>𝑐

|E[exp(𝗂𝑡𝓁1∕𝜎𝓁)]| < 1.

Moreover, by the proposition following Petrov (1995, Lemma 1.4), condition (c′) is in turn implied by the following condition:
10
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R

a

f
𝑐
i
o
o
(

(c′′) lim sup𝑛,|𝑡|→∞ E[exp(𝗂𝑡𝓁1∕𝜎𝓁)]| < 1.

When 𝓁1 does not depend on 𝑛, conditions (c) and (c′) are equivalent and it is customary to replace these conditions by (c′′), which
itself reduces to the familiar Cramér condition on 𝓁1, namely

lim sup
|𝑡|→∞

E[exp(𝗂𝑡𝓁1)] < 1. (A.1)

In contrast, when 𝓁1 does depend on 𝑛, condition (c) is potentially easier to verify than (c′′). An example where this potential is
realized is given by the DWAD estimator studied in Theorems 1 and 2. In that example, it appears difficult to formulate simple
conditions under which (c′′) holds, but we are able to verify (c) with the help of the following observation: By (B.1), (c) holds
whenever there exists a fixed function 𝜆 satisfying

E[(𝓁1 − 𝜆(𝑍1))2] = 𝑜(1∕ log2 𝑛) and lim sup
|𝑡|→∞

E[exp(𝗂𝑡𝜆(𝑍1))]| < 1, (A.2)

a condition which is itself equivalent to (A.1) when 𝓁1 does not depend on 𝑛.
To summarize, the condition (A.2) is equivalent to (c′′) when 𝓁1 does not depend on 𝑛 and more generally it provides a simple

sufficient condition for (c) when 𝓁1 is mean square convergent.

Remark A.3. Suppose 𝑢𝑛 does not depend on 𝑛 and that

E[|𝓁1|3] <∞, E[|𝑞12|3] <∞, and lim sup
|𝑡|→∞

|

|

E[exp(𝗂𝑡𝓁1)]|| < 1.

If 𝜃 = E[𝑢(𝑍1, 𝑍2)] and if 𝜗2 = 𝑛−1𝜎2𝓁 , then the assumptions of Corollary A.1 are satisfied with 𝛾1 = 0 and  = 𝑂(𝑛−1). Also, 𝛾2 = 𝑂(𝑛−1)
and 𝛾𝑗 = 𝑂(𝑛−1) for 4 ≤ 𝑗 ≤ 9, so

𝐺̄(𝑥) = 𝛷(𝑥) − 𝜙(𝑥)
𝛾3

6
√

𝑛
(𝑥2 − 1) + 𝑂(𝑛−1), 𝛾3 =

𝜘1 + 6𝜘2
𝜎3𝓁

,

uniformly in 𝑥 ∈ R. In other words, we recover a variant of Bickel et al. (1986, Theorem 1.2). See also Jing and Wang (2003).

emark A.4. If E
[

|𝓁1∕𝜎𝓁|
3
]

= 𝑂(1) and if 𝑛−1𝜎2𝑞∕𝜎
2
𝓁 → 0, then the Hölder inequality implies

 ≲ 1
𝑛

3
√

E[|𝑞12∕𝜎𝓁|3] +
(

1
𝑛3∕4

3
√

E[|𝑞12∕𝜎𝓁|3]
)2

+

(

log3 𝑛
𝑛

E
[

|𝑞12∕𝜎𝓁|
2]
)𝑝∕2

+
log1+𝑝 𝑛
𝑛𝑝∕2

E
[

(E[(𝑞12∕𝜎𝓁)2|𝑍1])𝑝∕2
]

+
log1+𝑝 𝑛
𝑛𝑝−1

E
[

|𝑞12∕𝜎𝓁|
𝑝] ,

where 𝑎 ≲ 𝑏 denotes 𝑎 ≤ 𝐶𝑏 for some positive constant 𝐶. Thus, for 𝑝 = 3 the majorant side of  is 𝑜(1) iff

E
[

|𝑞12∕𝜎𝓁|
2] = 𝑜(𝑛∕ log3 𝑛), E

[

|𝑞12∕𝜎𝓁|
3] = 𝑜(𝑛2∕ log4 𝑛),

nd if

E
[

(E[(𝑞12∕𝜎𝓁)2|𝑍1])3∕2
]

= 𝑜(𝑛3∕2∕ log4 𝑛).

Appendix B. Proof of Theorem A.1

Before presenting the formal proof, we outline the main steps involved, and compare our proof strategy to the approach taken
in Jing and Wang (2003) for second-order U-statistics with fixed kernels (i.e., 𝑢𝑛 not depending on 𝑛) and, more broadly, to the
classical Edgeworth expansion theory for sums of independent random variables (e.g., Bhattacharya and Rao, 1976; Hall, 1992).

We start from the following bound on the Kolmogorov distance between 𝐹 and 𝐺:

𝜌(𝐹 ,𝐺) ∶= sup
𝑡∈R

|𝐹 (𝑡) − 𝐺(𝑡)| ≲ ∫
|𝑡|≤

√

𝑛 log 𝑛

|

|

|

|

𝜒𝐹 (𝑡) − 𝜒𝐺(𝑡)
𝑡

|

|

|

|

d𝑡 + 1
√

𝑛 log 𝑛
,

where 𝜒𝐹 is the characteristic function of 𝐹 . The integral is then upper bounded over three different frequency domains: Low
requency (LF), |𝑡| ≤ log 𝑛; medium frequency (MF), log 𝑛 < |𝑡| ≤ 𝑐

√

𝑛 (for a judiciously chosen 𝑐); and high frequency (HF),
√

𝑛 < |𝑡| ≤
√

𝑛 log 𝑛. In the case of MF and HF, we further use the bound |𝜒𝐹 (𝑡) − 𝜒𝐺(𝑡)| ≤ |𝜒𝐹 (𝑡)| + |𝜒𝐺(𝑡)| (i.e., the triangle
nequality) and deal with each term separately. At this level of generality the proof strategy is similar to the canonical case of first-
rder U-statistics (e.g., Bhattacharya and Rao, 1976; Hall, 1992). However, we need to proceed differently to control the influence
f the quadratic term, for which a bound follows almost exclusively from the linear part. For instance, for HF, we use Assumption
c) to find a 𝑏 > 0 such that for large 𝑛 and for |𝑡| ∈ (𝑐

√

𝑛,
√

𝑛 log 𝑛],
|

|𝜒
( 𝑡 )

|

| ≤ 1 − 𝑏 < exp(−𝑏), 𝜒 (𝑡) ∶= E[exp(𝗂𝑡𝓁 )].
11
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a
b

a

S

I

F

For the most interesting part, the LF domain, we begin by approximating 𝜒𝐹 (𝑡) as follows:

𝜒𝐹 (𝑡) = exp
(

𝗂
𝑡
𝜗
𝐵
)

E
[

exp
(

𝗂
𝑡
𝜗
𝐿
)

exp
(

𝗂
𝑡
𝜗
𝑄
)]

≈ exp
(

𝗂
𝑡
𝜗
𝐵
)

E
[

(

𝗂
𝑡
𝜗
𝐿
)

(

1 + 𝗂
𝑡
𝜗
𝑄 − 𝑡2

2𝜗2
𝑄2

)]

,

nd then examine each term on the right hand side separately while controlling the approximation error using Lemma E.1 and the
ound

|

|

|

|

|

|

exp(𝗂𝑥) −
∑

0≤𝑗≤2

(𝗂𝑥)𝑗

𝑗!

|

|

|

|

|

|

≤ |𝑥|𝑝. (B.1)

When doing this, our proof departs from Jing and Wang (2003) because we do not know ex-ante which term(s) are higher-order
due to the possibly 𝑛-varying structure of the U-statistic kernel. Therefore, we keep track of all terms, with special attention to the
contribution of the terms involving 𝑄. Finally, we collect all (possibly) leading terms in the approximation to 𝜒𝐹 in 𝜒𝐺 and arrive
at a result of the form

|𝜒𝐹 (𝑡) − 𝜒𝐺(𝑡)| ≲ exp
(

− 𝑡
2

4

)

(𝑡) +
|𝑡|𝑝

𝑛3𝑝∕2𝜗𝑝 log𝑝∕2 𝑛
𝑝(log 𝑛), (B.2)

where

(𝑡) ∶= 𝑡4

𝑛3𝜗4
E[|𝓁2

1𝓁2𝑞12|] +
|𝑡|5

𝑛4𝜗5
E[|𝓁2

1𝓁
2
2𝑞12|] +

|𝑡|3

𝑛3𝜗3
E[|𝓁1𝑞212|] +

|𝑡|5

𝑛4𝜗5
E[|𝓁1𝓁2𝓁3𝑞13𝑞23|]

+
|𝑡|7

𝑛5𝜗7
|𝜘2|E[|𝓁2

1𝓁2𝑞12|] +
𝑡8

𝑛6𝜗8
|𝜘2|E[|𝓁2

1𝓁
2
2𝑞12|],

nd where 𝑛−1𝜎2𝓁∕𝜗
2 → 1.

Technical Details. Letting 𝑔 denote the Lebesgue density of 𝐺, application of a ‘‘smoothing inequality’’ (e.g., Theorem 5.1 of
Petrov, 1995) gives

𝜌(𝐹 ,𝐺) ≲ ∫
|𝑡|≤𝜐

|

|

|

|

𝜒𝐹 (𝑡) − 𝜒𝐺(𝑡)
𝑡

|

|

|

|

d𝑡 +
sup𝑥∈R |𝑔(𝑥)|

𝜐
, 𝜐 > 0.

etting 𝑣 =
√

𝑛 log 𝑛 and using the fact that 𝑔 is bounded (because ∑

2≤𝑗≤9 |𝛾𝑗 | → 0), it follows from the triangle inequality that

𝜌(𝐹 ,𝐺) ≲ 1 + 2 + 3 + 4 +
1

√

𝑛 log 𝑛
, (B.3)

where, with 𝑐 > 0 a constant to be chosen later,

1 ∶= ∫
|𝑡|≤log 𝑛

|

|

|

|

𝜒𝐹 (𝑡) − 𝜒𝐺(𝑡)
𝑡

|

|

|

|

d𝑡, 2 ∶= ∫log 𝑛<|𝑡|≤𝑐√𝑛

|

|

|

|

𝜒𝐹 (𝑡)
𝑡

|

|

|

|

d𝑡,

3 ∶= ∫𝑐√𝑛<|𝑡|≤√𝑛 log 𝑛

|

|

|

|

𝜒𝐹 (𝑡)
𝑡

|

|

|

|

d𝑡, 4 ∶= ∫
|𝑡|>log 𝑛

|

|

|

|

𝜒𝐺(𝑡)
𝑡

|

|

|

|

d𝑡.

n what follows, we bound each of these integrals in turn.
Bound for 1. We start by approximating

𝜒𝐿+𝑄
( 𝑡
𝜗

)

∶= E
[

exp
(

𝗂
𝑡
𝜗
𝐿
)

exp
(

𝗂
𝑡
𝜗
𝑄
)]

.

First, using (B.1), we have
|

|

|

|

|

𝜒𝐿+𝑄
( 𝑡
𝜗

)

− E
[

exp
(

𝗂
𝑡
𝜗
𝐿
)

(

1 + 𝗂
𝑡
𝜗
𝑄 − 𝑡2

2𝜗2
𝑄2

)]

|

|

|

|

|

≤ |𝜏|𝑝𝑛𝑝E
[

|𝑄|𝑝
]

, 𝜏 ∶= 𝑡
𝑛𝜗
.

Also, since 𝓁1,… ,𝓁𝑛 are 𝑖.𝑖.𝑑.,

E
[

exp
(

𝗂
𝑡
𝜗
𝐿
)]

= E

[

exp

(

𝗂𝜏
∑

1≤𝑖≤𝑛
𝓁𝑖

)]

= E

[

∏

1≤𝑖≤𝑛
exp

(

𝗂𝜏𝓁𝑖
)

]

= 𝜒𝓁(𝜏)𝑛.

inally, because 𝓁𝑘 is independent of 𝑞𝑖𝑗 when 𝑘 ∉ {𝑖, 𝑗},
(

𝑛
2

)

E
[

exp
(

𝗂
𝑡
𝜗
𝐿
)

𝑄
]

=
∑

1≤𝑖<𝑗≤𝑛
E

[

𝑞𝑖𝑗
∏

1≤𝑘≤𝑛
exp

(

𝗂𝜏𝓁𝑘
)

]

=
∑

1≤𝑖<𝑗≤𝑛
E
⎡

⎢

⎢

⎢

⎣

exp
(

𝗂𝜏(𝓁𝑖 + 𝓁𝑗 )
)

𝑞𝑖𝑗
∏

1≤𝑘≤𝑛
𝑘∉{𝑖,𝑗}

exp
(

𝗂𝜏𝓁𝑘
)

⎤

⎥

⎥

⎥

⎦

=
(

𝑛
)

𝜒𝓁(𝜏)𝑛−2E
[

exp
(

𝗂𝜏(𝓁1 + 𝓁2)
)

𝑞12
]

12

2
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U

and
(

𝑛
2

)2
E
[

exp
(

𝗂
𝑡
𝜗
𝐿
)

𝑄2
]

=
∑

1≤𝑖<𝑗≤𝑛
E

[

𝑞2𝑖𝑗
∏

1≤𝑚≤𝑛
exp

(

𝗂𝜏𝓁𝑚
)

]

+
∑

1≤𝑖<𝑗<𝑙≤𝑛
E

[

𝑞𝑖𝑗𝑞𝑗𝑙
∏

1≤𝑚≤𝑛
exp

(

𝗂𝜏𝓁𝑚
)

]

+
∑

1≤𝑖<𝑗<𝑘<𝑙≤𝑛
E

[

𝑞𝑖𝑗𝑞𝑘𝑙
∏

1≤𝑚≤𝑛
exp

(

𝗂𝜏𝓁𝑚
)

]

=
(

𝑛
2

)

𝜒𝓁(𝜏)𝑛−2E
[

exp
(

𝗂𝜏(𝓁1 + 𝓁2)
)

𝑞212
]

+
(

𝑛
3

)

𝜒𝓁(𝜏)𝑛−3E
[

exp
(

𝗂𝜏(𝓁1 + 𝓁2 + 𝓁3)
)

𝑞12𝑞23
]

+
(

𝑛
4

)

𝜒𝓁(𝜏)𝑛−4
(

E
[

exp
(

𝗂𝜏(𝓁1 + 𝓁2)
)

𝑞12
])2 .

sing the four preceding displays, we therefore have, uniformly in |𝑡| ≤ log 𝑛,

𝜒𝐿+𝑄
( 𝑡
𝜗

)

= 𝜒𝓁(𝜏)𝑛

+ 𝜒𝓁(𝜏)𝑛−2
[

𝗂𝜏𝑛E
[

exp(𝗂𝜏(𝓁1 + 𝓁2))𝑞12
]

− 𝜏2

2
𝑛2
(

𝑛
2

)−1
E
[

exp(𝗂𝜏(𝓁1 + 𝓁2))𝑞212
]

]

− 𝜒𝓁(𝜏)𝑛−3
𝜏2

2
𝑛2
(

𝑛
2

)−2(𝑛
3

)

E
[

exp(𝗂𝜏(𝓁1 + 𝓁2 + 𝓁3))𝑞13𝑞23
]

− 𝜒𝓁(𝜏)𝑛−4
𝜏2

2
𝑛2
(

𝑛
2

)−2(𝑛
4

)

(

E
[

exp(𝗂𝜏(𝓁1 + 𝓁2))𝑞12
])2

+ |𝜏|𝑝𝑂
(

𝑛𝑝E
[

|𝑄|𝑝
])

. (B.4)

Next, using degeneracy of 𝑞𝑖𝑗 and (B.1), we have

E
[

exp(𝗂𝜏(𝓁1 + 𝓁2))𝑞12
]

= −𝜏2E
[

𝓁1𝓁2𝑞12
]

+ 𝗂𝜏E
[

𝓁1
(

exp(𝗂𝜏𝓁2) − 1 − 𝗂𝜏𝓁2
)

𝑞12 + 𝓁2
(

exp(𝗂𝜏𝓁1) − 1 − 𝗂𝜏𝓁1
)

𝑞12
]

+ E
[(

exp(𝗂𝜏𝓁1) − 1 − 𝗂𝜏𝓁1
) (

exp(𝗂𝜏𝓁2) − 1 − 𝗂𝜏𝓁2
)

𝑞12
]

= −𝜏2𝜘2 + |𝜏|3𝑂
(

E
[

|𝓁2
1𝓁2𝑞12|

])

+ 𝜏4𝑂
(

E
[

|𝓁2
1𝓁

2
2𝑞12|

])

.

Similarly,

E
[

exp(𝗂𝜏(𝓁1 + 𝓁2))𝑞212
]

= E
[

𝑞212
]

+ E
[(

exp(𝗂𝜏(𝓁1 + 𝓁2)) − 1
)

𝑞212
]

= 𝜎2𝑞 + |𝜏|𝑂
(

E
[

|𝓁1𝑞
2
12|

])

and

E
[

exp(𝗂𝜏(𝓁1 + 𝓁2 + 𝓁3))𝑞13𝑞23
]

= E

[(

∏

1≤𝑖≤3

(

exp(𝗂𝜏𝓁𝑖) − 1
)

)

𝑞13𝑞23

]

= |𝜏|3𝑂
(

E
[

|𝓁1𝓁2𝓁3𝑞13𝑞23|
])

.

Also, using arguments familiar from the Edgeworth expansion theory for sum of 𝑖.𝑖.𝑑. random variables (e.g., Bhattacharya and Rao,
1976; Hall, 1992), we have, for 𝑘 ∈ {0, 2, 3, 4},

𝜒𝓁(𝜏)𝑛−𝑘 = exp
(

− 𝑡
2

2

)

⎡

⎢

⎢

⎣

1 −

(

𝑛−1𝜎2𝓁 − 𝜗2

𝜗2

)

𝑡2

2
− 𝗂

𝜘1
𝑛2𝜗3

𝑡3

6
+

(

𝑛−1𝜎2𝓁 − 𝜗2

𝜗2

)2

𝑂(𝑡4)
⎤

⎥

⎥

⎦

+ exp
(

− 𝑡
2

4

)

𝑜

(

|𝑡|3
√

𝑛
+ 𝑡6

√

𝑛

)

.

Finally, using Lemma E.1, we have

E
[

|𝑄|𝑝
]

≲
𝑝(𝑛)

𝑛2𝑝
≲

𝑝(log 𝑛)

𝑛3𝑝∕2 log𝑝∕2 𝑛
.

Plugging the displays from the previous paragraph into (B.4), we obtain (B.2) and therefore

1 ≲ ∫
|𝑡|≤log 𝑛

exp
(

− 𝑡
2

4

)

|𝑡|−1(𝑡)d𝑡 +
𝑝(log 𝑛)

𝑛3𝑝∕2𝜗𝑝 log𝑝∕2 𝑛 ∫
|𝑡|≤log 𝑛

|𝑡|𝑝−1d𝑡

≲ (1) +
log𝑝∕2 𝑛

 (log 𝑛)
13

𝑛3𝑝∕2𝜗𝑝 𝑝
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w

a

w

S
l

S

≲ 1
𝑛𝜎4𝓁

E[|𝓁2
1𝓁2𝑞12|] +

1
𝑛3∕2𝜎5𝓁

E[|𝓁2
1𝓁

2
2𝑞12|] +

1
𝑛3∕2𝜎3𝓁

E[|𝓁1𝑞212|] +
1

𝑛3∕2𝜎5𝓁
E[|𝓁1𝓁2𝓁3𝑞13𝑞23|]

+ 1
𝑛3∕2𝜎7𝓁

|𝜘2|E[|𝓁2
1𝓁2𝑞12|] +

1
𝑛2𝜎8𝓁

|𝜘2|E[|𝓁2
1𝓁

2
2𝑞12|] +

log𝑝∕2 𝑛
𝑛𝑝𝜎𝑝𝓁

𝑝(log 𝑛),

here the last ≲ uses 𝑛−1𝜎2𝓁∕𝜗
2 → 1.

Bound for 2. For 1 ≤ 𝑚 < 𝑛, defining

𝑄(𝑚) ∶=
(

𝑛
2

)−1
∑

1≤𝑖<𝑗≤𝑛
𝑖≤𝑚

𝑞𝑖𝑗

nd using (B.1), we have

|𝜒𝐹 (𝑡)| =
|

|

|

|

𝜒𝐿+𝑄
( 𝑡
𝜗

)

|

|

|

|

≤
|

|

|

|

|

|

E

[

exp
(

𝗂
𝑡
𝜗
(𝐿 +𝑄 −𝑄(𝑚))

)

∑

0≤𝑘≤2

(𝗂𝑡)𝑘

𝑘!𝜗𝑘
𝑄(𝑚)𝑘

]

|

|

|

|

|

|

+
|𝑡|𝑝

𝜗𝑝
E
[

|𝑄(𝑚)|𝑝
]

,

here, using the fact that 𝑄 −𝑄(𝑚) is a function of 𝑋𝑚+1,… , 𝑋𝑛, it can be shown that
|

|

|

|

E
[

exp
(

𝗂
𝑡
𝜗
(𝐿 +𝑄 −𝑄(𝑚))

)

𝑄(𝑚)𝑘
]

|

|

|

|

≲
(𝑚
𝑛

)𝑘
|𝜒𝓁(𝜏)|

𝑚−2𝑘E[|𝑞12|𝑘], 𝑘 ∈ {0, 1, 2},

and therefore, using 𝑛−1𝜎2𝓁∕𝜗
2 → 1,

|𝜒𝐹 (𝑡)| ≲
∑

0≤𝑘≤2

(

|𝑡|𝑚
√

𝑛

)𝑘

|𝜒𝓁(𝜏)|
𝑚−2𝑘E

[

|

|

|

|

𝑞12
𝜎𝓁

|

|

|

|

𝑘]

+
|𝑡|𝑝

𝜗𝑝
E[|𝑄(𝑚)|𝑝]. (B.5)

Next, because E
[

|𝓁1∕𝜎𝓁|
3
]

= 𝑂(1) and 𝑛−1𝜎2𝓁∕𝜗
2 → 1, there exists a 𝑐 > 0 such that, for 𝑛 sufficiently large,

|𝜒𝓁(𝜏)| ≤ 1 − 𝑡2

3𝑛
≤ exp

(

− 𝑡2

3𝑛

)

, 𝑡 ≤ 𝑐
√

𝑛.

etting 𝑚 = ⌊15𝑛 log 𝑛∕𝑡2⌋ in (B.5), where ⌊⋅⌋ denotes the floor operator, and using the preceding display, we obtain (for 𝑛 sufficiently
arge)

|𝜒𝐹 (𝑡)| ≲
∑

0≤𝑘≤2

|𝑡|𝑘

𝑛5−𝑘
E
[

|

|

|

|

𝑞12
𝜎𝓁

|

|

|

|

𝑘]

+
|𝑡|𝑝

𝜗𝑝
E[|𝑄(𝑚)|𝑝], log 𝑛 < |𝑡| ≤ 𝑐

√

𝑛,

where, using Lemma E.1 and 𝑛−1𝜎2𝓁∕𝜗
2 → 1,

|𝑡|𝑝

𝜗𝑝
E[|𝑄(𝑚)|𝑝] ≲

|𝑡|𝑝

𝑛2𝑝𝜗𝑝
𝑝(𝑚)

≲
log𝑝∕2 𝑛
𝑛𝑝∕2𝜎𝑝𝓁

𝜎𝑝𝑞 + |𝑡|𝑝−2
log 𝑛
𝑛𝑝−1𝜎𝑝𝓁

[

E
[

(E[𝑞212|𝑍1])𝑝∕2
]

+
E
[

|𝑞12|
𝑝]

𝑛𝑝∕2−1

]

, log 𝑛 < |𝑡| ≤ 𝑐
√

𝑛.

As a consequence, using 𝑛−1𝜎2𝑞∕𝜎
2
𝓁 → 0,

2 ≲
∑

0≤𝑘≤2

1
𝑛5−3𝑘∕2

E
[

|

|

|

|

𝑞12
𝜎𝓁

|

|

|

|

𝑘]

+
log1+𝑝∕2 𝑛
𝑛𝑝∕2𝜎𝑝𝓁

𝜎𝑝𝑞 +
log 𝑛
𝑛𝑝∕2𝜎𝑝𝓁

E
[

(E[𝑞212|𝑍1])𝑝∕2
]

+
log 𝑛
𝑛𝑝−1𝜎𝑝𝓁

E
[

|𝑞12|
𝑝]

= 𝑜(𝑛−1) + 𝑜

(

log𝑝 𝑛
𝑛𝑝𝜎𝑝𝓁

𝑝(log 𝑛)

)

.

Bound for 3. By condition (c), there exists 𝑏 > 0 such that, for 𝑛 sufficiently large,

|𝜒𝓁(𝜏)| ≤ 1 − 𝑏 ≤ exp(−𝑏), 𝑐
√

𝑛 < |𝑡| <
√

𝑛 log 𝑛.

etting 𝑚 = ⌊4 log 𝑛∕𝑏⌋ in (B.5) and using the preceding display, we obtain (for 𝑛 sufficiently large)

|𝜒𝐹 (𝑡)| ≲
∑

0≤𝑘≤2

|𝑡|𝑘 log𝑘 𝑛
𝑛4+𝑘∕2

E
[

|

|

|

|

𝑞12
𝜎𝓁

|

|

|

|

𝑘]

+
|𝑡|𝑝

𝜗𝑝
E[|𝑄(𝑚)|𝑝], 𝑐

√

𝑛 < |𝑡| <
√

𝑛 log 𝑛,

where, using Lemma E.1 and 𝑛−1𝜎2𝓁∕𝜗
2 → 1,

|𝑡|𝑝

𝜗𝑝
E[|𝑄(𝑚)|𝑝] ≲

|𝑡|𝑝

𝑛2𝑝𝜗𝑝
𝑝(𝑚) ≲

|𝑡|𝑝

𝑛3𝑝∕2𝜎𝑝𝓁
𝑝(log 𝑛), 𝑐

√

𝑛 < |𝑡| <
√

𝑛 log 𝑛.

As a consequence, using 𝑛−1𝜎2𝑞∕𝜎
2
𝓁 → 0,

3 = 𝑜(𝑛−2) + 𝑂

(

𝑝(log 𝑛)
3𝑝∕2 𝑝 ∫ √ √

|𝑡|𝑝−1𝑑𝑡

)

14

𝑛 𝜎𝓁 𝑐 𝑛≤|𝑡|≤ 𝑛 log 𝑛
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a

w

a

i

= 𝑜(𝑛−2) + 𝑂

(

log𝑝 𝑛
𝑛𝑝𝜎𝑝𝓁

𝑝(log 𝑛)

)

.

Bound for 4. For every 𝑗, we have

∫𝑡>log 𝑛
𝑡𝑗−1 exp

(

− 𝑡
2

2

)

d𝑡 ≲ ∫𝑡>log 𝑛
exp

(

− 𝑡
2

4

)

d𝑡 = 𝑜(𝑛−1),

nd therefore, using ∑

2≤𝑗≤9 |𝛾𝑗 | → 0,

4 ≲ ∫
|𝑡|>log 𝑛

|𝑡|−1 exp
(

− 𝑡
2

2

) |

|

|

|

|

|

1 +
9
∑

𝑗=2
(𝗂𝑡)𝑗 𝛾𝑗

|

|

|

|

|

|

d𝑡

≲

(

1 +
9
∑

𝑗=2
|𝛾𝑗 |

)

∫𝑡>log 𝑛
𝑡−1 exp

(

− 𝑡
2

4

)

d𝑡 = 𝑜(𝑛−1). □

Appendix C. Proof of Theorem 1

We employ Corollary A.1 with 𝑢(𝑍𝑖, 𝑍𝑗 ) = 𝗏′𝑈𝑖𝑗 and 𝑝 = 3. Proceeding as in Cattaneo et al. (2010, 2014b,a), condition (a) of
Theorem A.1 can be verified by direct calculations. Also, condition (b) of Theorem A.1 holds because

𝜎2𝓁 = 𝜎2𝗏 + 𝑜(1), 𝜎2𝑞 =
𝛿2𝗏 + 𝑜(1)
ℎ𝑑+2

, and 𝑛ℎ𝑑+2 → ∞,

while condition (c) of Theorem A.1 holds because (A.2) is satisfied with 𝜆 = 𝜓𝗏. The additional condition 𝛾1 → 0 of Corollary A.1
holds if 𝑛ℎ2𝑃 → 0 because it follows from routine (bias) calculations that E[𝜃𝗏] − 𝜃𝗏 = ℎ𝑃 𝛽𝗏 + 𝑜(ℎ𝑃 ).

Next, the law of iterated expectations, integration by parts, and Taylor series expansions can be used to show that

𝜘1 = 𝜅1,𝗏 + 𝑂(ℎ𝑃 ), and 𝜘2 = 𝜅2,𝗏 + 𝑂(ℎ𝑃 ),

and also that 𝛾4 ≲ 𝑛−3ℎ−𝑑−2, 𝛾5 ≲ 𝑛−2, 𝛾6 ≲ 𝑛−1, 𝛾8 ≲ 𝑛−3, and 𝛾9 ≲ 𝑛−7∕2.
Finally, by Cattaneo et al. (2014a, Supplemental Appendix), we have

E[𝑞212]
3∕2 ≤ E

[

(E[𝑞212|𝑍1])3∕2
]

≲ ℎ−3𝑑∕2−3 and E[|𝑞12|3] ≲ ℎ−2𝑑−3.

Using these bounds and the Hölder inequality, we find that  = 𝑜(𝑛−1ℎ−𝑑−2). □

Appendix D. Proof of Theorem 2

Letting 𝓁𝑖 ∶= 𝗏′𝐿𝑖 and 𝑞𝑖𝑗 ∶= 𝗏′𝑄𝑖𝑗 , occasionally suppressing the dependence on 𝗏, and using the Hoeffding decomposition of
𝜃𝗏 − 𝜃𝗏 along with the identity

𝜗
𝜗
= 1 − 𝜗2 − 𝜗2

2𝜗2
+

(𝜗 + 2𝜗)(𝜗2 − 𝜗2)2

2𝜗2𝜗(𝜗 + 𝜗)2
, (D.1)

we have

𝜃𝗏 − 𝜃𝗏
𝜗𝚂𝙱,𝗏

= 𝑇𝚂𝙱 + 𝑅𝚂𝙱,

where

𝑇𝚂𝙱 ∶= 𝐵 + 𝐿 +𝑄
𝜗𝚂𝙱,𝗏

−
𝜗2
𝚂𝙱,𝗏 − 𝜗

2
𝚂𝙱,𝗏

2𝜗2
𝚂𝙱,𝗏

𝐿 +𝑄
𝜗𝚂𝙱,𝗏

,

ith 𝜗𝚂𝙱,𝗏 is a judiciously chosen positive scalar,

𝐵 ∶= E[𝜃𝗏] − 𝜃𝗏, 𝐿 ∶= 𝑛−1
∑

1≤𝑖≤𝑛
𝓁𝑖, and 𝑄 ∶=

(

𝑛
2

)−1
∑

1≤𝑖<𝑗≤𝑛
𝑞𝑖𝑗 ,

nd where

𝑅𝚂𝙱 ∶= −
𝜗2
𝚂𝙱,𝗏 − 𝜗

2
𝚂𝙱,𝗏

2𝜗2
𝚂𝙱,𝗏

𝐵
𝜗𝚂𝙱,𝗏

+
(𝜗𝚂𝙱,𝗏 + 2𝜗𝚂𝙱,𝗏)(𝜗2𝚂𝙱,𝗏 − 𝜗

2
𝚂𝙱,𝗏)

2

2𝜗2
𝚂𝙱,𝗏𝜗𝚂𝙱,𝗏(𝜗𝚂𝙱,𝗏 + 𝜗𝚂𝙱,𝗏)

2

𝐵 + 𝐿 +𝑄
𝜗𝚂𝙱,𝗏

s a remainder term.
Defining

̃ [̃ ]
15

𝐹𝚂𝙱(𝑥) ∶= P 𝑇𝚂𝙱 ≤ 𝑥
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and adapting the proof of Theorem A.1, we obtain

𝜌(𝐹𝚂𝙱, 𝐺𝚂𝙱) = 𝑜(𝑟𝑛) (D.2)

by applying a smoothing inequality followed by a split of the frequency domain of the resulting integral, where bounding the various
integrals requires some additional care due to the presence of the variance estimator.

Also, using the strengthened moment condition E[𝑌 6] <∞, we obtain

P[|𝑅𝚂𝙱| > 𝑟𝑛∕ log 𝑛] = 𝑜(𝑟𝑛), (D.3)

implying in turn that 𝜌(𝐹𝚂𝙱, 𝐹𝚂𝙱) = 𝑜(𝑟𝑛) and therefore also that

𝜌(𝐹𝚂𝙱, 𝐺𝚂𝙱) ≤ 𝜌(𝐹𝚂𝙱, 𝐹𝚂𝙱) + 𝜌(𝐹𝚂𝙱, 𝐺𝚂𝙱) = 𝑜(𝑟𝑛).

Technical Details. The identity (D.1) can be obtained as follows:

𝜗
𝜗
= 1 − 𝜗 − 𝜗

𝜗
𝜗 + 𝜗
𝜗 + 𝜗

+
(𝜗 − 𝜗)2

𝜗𝜗

(𝜗 + 𝜗)2

(𝜗 + 𝜗)2

= 1 − 𝜗2 − 𝜗2

2𝜗2
+ 𝜗 − 𝜗

2𝜗2(𝜗 + 𝜗)
(𝜗2 − 𝜗2) +

(𝜗2 − 𝜗2)2

𝜗𝜗(𝜗 + 𝜗)2

= 1 − 𝜗2 − 𝜗2

2𝜗2
+

(𝜗 + 2𝜗)(𝜗2 − 𝜗2)2

2𝜗2𝜗(𝜗 + 𝜗)2
.

Letting 𝑢𝑖𝑗 ∶= 𝗏′𝑈𝑖𝑗 and defining

𝑈 ∶=
(

𝑛
2

)−1
∑

1≤𝑖<𝑗≤𝑛
𝑢𝑖𝑗 = 𝜃𝗏, 𝑊1 ∶=

(

𝑛
2

)−1
∑

1≤𝑖<𝑗≤𝑛
𝑢2𝑖𝑗 ,

and

𝑊2 ∶=
(

𝑛
3

)−1
∑

1≤𝑖<𝑗<𝑘≤𝑛

𝑢𝑖𝑗𝑢𝑖𝑘 + 𝑢𝑖𝑗𝑢𝑗𝑘 + 𝑢𝑖𝑘𝑢𝑗𝑘
3

,

f follows from Cattaneo et al. (2014a, Supplemental Appendix) that

𝜗2
𝚂𝙱,𝗏 =

(

𝑛
2

)−1
𝑊1 +

4
𝑛
𝑛 − 2
𝑛 − 1

𝑊2 −
4
𝑛
𝑈2.

Also, for 𝑘 ∈ {2, 3}, using Cattaneo et al. (2014a, Supplemental Appendix) and Lemma E.1,

E[|𝑈 − E[𝑢12]|2𝑘] ≲ 𝑛−𝑘 + 𝑛−2𝑘ℎ−(2𝑝−1)𝑑−2𝑘,

E[|𝑊1 − E[𝑢212]|
𝑘] ≲ 𝑛−𝑘∕2ℎ−𝑘(𝑑+2) + 𝑛−𝑘ℎ−(2𝑘−1)𝑑−2𝑝,

E[|𝑊2 − E[(E[𝑢12|𝑍1])
2]|𝑘] ≲ 𝑛−𝑘∕2 + 𝑛−𝑘ℎ−(𝑘−1)𝑑−2𝑝 + 𝑛−3𝑘∕2ℎ−2(𝑘−1)𝑑−2𝑘,

and therefore

E
[

|𝜗2
𝚂𝙱,𝗏 − 𝜗

2
𝚂𝙱,𝗏|

𝑘]
≲ 𝑛−2𝑘E[|𝑊1 − E[𝑢212]|

𝑘] + 𝑛−𝑘E[|𝑊2 − E[(E[𝑢12|𝑍1])2]|
𝑘]

+ 𝑛−𝑘
√

E[|𝑈 − E[𝑢12]|2𝑘]

≲ 𝑛−3𝑘∕2 + 𝑛−2𝑘ℎ−(𝑘−1∕2)𝑑−2𝑘 + 𝑛−5𝑘∕2ℎ−2(𝑘−1)𝑑−2𝑘, (D.4)

where

𝜗2
𝚂𝙱,𝗏 ∶=

(

𝑛
2

)−1
E[𝑢212] +

4
𝑛
E[(E[𝑢12|𝑍1])2] −

4
𝑛
E[𝑢12]2.

To prove (D.3), it suffices to show that 1 + 2 + 3 = 𝑜(𝑟𝑛), where

1 ∶= P
⎡

⎢

⎢

⎣

(𝜗𝚂𝙱,𝗏 + 2𝜗𝚂𝙱,𝗏)(𝜗2𝚂𝙱,𝗏 − 𝜗
2
𝚂𝙱,𝗏)

2

𝜗2
𝚂𝙱,𝗏𝜗𝚂𝙱,𝗏(𝜗𝚂𝙱,𝗏 + 𝜗𝚂𝙱,𝗏)

2
>

𝑟𝑛
log2 𝑛

⎤

⎥

⎥

⎦

,

2 ∶= P

[

|𝜃𝗏 − 𝜃𝗏|
𝜗𝚂𝙱,𝗏

> log 𝑛

]

,

3 ∶= P
⎡

⎢

⎢

⎣

|𝜗2
𝚂𝙱,𝗏 − 𝜗

2
𝚂𝙱,𝗏|

𝜗2
𝚂𝙱,𝗏

|𝐵|
𝜗𝚂𝙱,𝗏

>

√

𝑛ℎ𝑃

log 𝑛

⎤

⎥

⎥

⎦

.
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N

F

P
b

a

First, using (D.4) and the Markov inequality,

1 ≤ P

[

(𝜗2
𝚂𝙱,𝗏 − 𝜗

2
𝚂𝙱,𝗏)

2 >
𝑟𝑛𝜎4𝗏

𝑛2 log2 𝑛

]

+ 𝑜(𝑟𝑛) ≲
𝑛3 log3 𝑛

𝑟3∕2𝑛

E
[

|𝜗2
𝚂𝙱,𝗏 − 𝜗

2
𝚂𝙱,𝗏|

3]
+ 𝑜(𝑟𝑛)

≲
log3 𝑛

𝑟3∕2𝑛

(𝑛−3∕2 + 𝑛−3ℎ−5𝑑∕2−6 + 𝑛−9∕2ℎ−4𝑑−6) + 𝑜(𝑟𝑛) = 𝑜(𝑟𝑛).

ext, using Theorem 1 and the properties of the standard normal distribution,

2 = 1 − P

[

𝜃𝗏 − 𝜃𝗏
𝜗𝚂𝙱,𝗏

≤ log 𝑛

]

+ P

[

𝜃𝗏 − 𝜃𝗏
𝜗𝚂𝙱,𝗏

< − log 𝑛

]

= 1 −𝛷(log 𝑛) +𝛷(− log 𝑛) + 𝑜(𝑟𝑛) = 𝑜(𝑟𝑛).

inally, using (D.4) and the Markov inequality,

3 ≲ 𝑛E
[

|𝜗2
𝚂𝙱,𝗏 − 𝜗

2
𝚂𝙱,𝗏|

2]
log2 𝑛

≲ (𝑛−2 + 𝑛−3ℎ−3𝑑∕2−4 + 𝑛−4ℎ−2𝑑−4) log2 𝑛 = 𝑜(𝑟𝑛).

Next, to prove (D.2) we begin by using a ‘‘smoothing inequality’’ to obtain the bound

𝜌(𝐹𝚂𝙱, 𝐺𝚂𝙱) ≲ ̂1 + ̂2 + ̂3 + ̂4 +
1

√

𝑛 log 𝑛
,

where

̂1 ∶= ∫
|𝑡|≤log 𝑛

|

|

|

|

|

𝜒𝐹𝚂𝙱 (𝑡) − 𝜒𝐺𝚂𝙱
(𝑡)

𝑡

|

|

|

|

|

d𝑡, ̂2 ∶= ∫log 𝑛<|𝑡|≤𝑐√𝑛

|

|

|

|

|

𝜒𝐹𝚂𝙱 (𝑡)

𝑡

|

|

|

|

|

d𝑡,

̂3 ∶= ∫𝑐√𝑛<|𝑡|≤√𝑛 log 𝑛

|

|

|

|

|

𝜒𝐹𝚂𝙱 (𝑡)

𝑡

|

|

|

|

|

d𝑡, and ̂4 ∶= ∫
|𝑡|>log 𝑛

|

|

|

|

|

𝜒𝐺𝚂𝙱
(𝑡)

𝑡

|

|

|

|

|

d𝑡.

roceeding as in the proof of Theorem A.1, it can be shown that ̂2 + ̂3 + ̂4 = 𝑜(𝑟𝑛). The proof of (D.2) can therefore be completed
y showing that ̂1 = 𝑜(𝑟𝑛). We shall do so by adapting the proof of Theorem A.1 to also account for the contribution of 𝜗2

𝚂𝙱,𝗏 to 𝐹𝚂𝙱.
Defining

𝑉𝚂𝙱 ∶= 1
2𝑛𝜗2

𝚂𝙱,𝗏

𝑛−1
∑

1≤𝑖≤𝑛

(

𝓁2
𝑖 − 𝜎

2
𝓁 + 4E[𝓁𝑗𝑞𝑖𝑗 |𝑍𝑖]

)

+ 2
𝑛𝜗2

𝚂𝙱,𝗏

(

𝑛
2

)−1
∑

1≤𝑖<𝑗≤𝑛
E[𝑞𝑖𝑘𝑞𝑗𝑘|𝑍𝑖, 𝑍𝑗 ]

nd using Callaert and Veraverbeke (1981) and the Hölder inequality, it can be shown that

𝜒𝐹𝚂𝙱 (𝑡) = E
[

exp
(

𝗂𝑡𝑇𝚂𝙱
)

]

= 𝜒𝐹 (𝑡) − 𝗂𝑡E
[

exp
(

𝗂𝑡 𝐿
𝜗𝚂𝙱,𝗏

)

𝑉𝚂𝙱
𝐿
𝜗𝚂𝙱,𝗏

]

+ 𝑂(1(𝑡)), (D.5)

where 𝜒𝐹 was (defined and) analyzed in the proof of Theorem A.1 and where

1(𝑡) ∶=
|𝑡|

𝑛ℎ𝑑∕2+1 + 𝑛3∕2ℎ3𝑑∕2+3
+ 𝑡2

𝑛ℎ𝑑∕2+1 + 𝑛3∕2ℎ3𝑑∕2+3
.

As in Nishiyama and Robinson (2001), the second term on the right-hand side of (D.5) admits an expansion of the form

E
[

exp
(

𝗂𝑡 𝐿
𝜗𝚂𝙱,𝗏

)

𝑉𝚂𝙱
𝐿
𝜗𝚂𝙱,𝗏

]

= 𝜒𝓁(𝜏)𝑛−1
𝜘1 + 4𝜘2
2𝑛2𝜗3

𝚂𝙱,𝗏

− 𝜒𝓁(𝜏)𝑛−2
𝑡2

2
𝜘1 + 4𝜘2
𝑛2𝜗3

𝚂𝙱,𝗏

+ 𝜒𝓁(𝜏)𝑛−3𝑂(2(𝑡)), 𝜏 ∶= 𝑡
𝑛𝜗𝚂𝙱,𝗏

, (D.6)

where 𝜒𝓁(𝜏)𝑛−𝑘 was (defined and) analyzed in the proof of Theorem A.1 and where

2(𝑡) ∶=
|𝑡|

𝑛 + ℎ𝑑+2−𝑃
+ 𝑡2

𝑛 + 𝑛3∕2ℎ𝑑+2
+

|𝑡|3

𝑛
+ 𝑡4

𝑛3∕2 + 𝑛2ℎ𝑑+2
+

|𝑡|5

𝑛5∕2ℎ𝑑+2
+ 𝑡6

𝑛3ℎ𝑑+2
.

Combining (D.5) and (D.6) with the previously obtained expansions for 𝜒𝐹 and 𝜒𝓁(𝜏)𝑛−𝑘, we obtain an expansion of the form

𝜒𝐹𝚂𝙱 (𝑡) = 𝜒𝐺𝚂𝙱
(𝑡) +  (𝑡),

where

̂1 ∶=
|

|

|

 (𝑡) |
|

|

d𝑡 = 𝑜(𝑟𝑛). □
17

∫
|𝑡|≤log 𝑛 | 𝑡

|
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Appendix E. Auxiliary lemma

Lemma E.1. If  ⊆ {(𝑖, 𝑗) ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛} and if 𝑝 ≥ 2, then

E

[

|

|

|

|

|

|

∑

{𝑖,𝑗}∈
𝑞𝑖𝑗

|

|

|

|

|

|

𝑝]

≲
(

s1E[𝑞212]
)𝑝∕2 + s𝑝∕2E

[

(E[𝑞212|𝑍1])𝑝∕2
]

+ s1E[|𝑞12|𝑝],

where

s𝑠 ∶= max

[

∑

1≤𝑖≤𝑛

(

∑

1≤𝑗≤𝑛
1({𝑖, 𝑗} ∈ )

)𝑠

,
∑

1≤𝑖≤𝑛

(

∑

1≤𝑗≤𝑛
1({𝑗, 𝑖} ∈ )

)𝑠]

.

Proof. By Giné et al. (2000, Proposition 2.4), the inequality holds for the decoupled version of 𝑞𝑖𝑗 , defined as 𝑞𝑖𝑗 ∶= 𝑞(𝑍(1)
𝑖 , 𝑍(2)

𝑗 )
here {𝑍(𝑘)

𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 2} are 𝑖.𝑖.𝑑. copies of 𝑍. Finally, we can apply the decoupling inequalities in de la Peña and
ontgomery-Smith (1995) to obtain the result at the expense of increasing the constant without altering the order of the upper

ound; for further details, see Giné et al. (2000, Section 2.5). □
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